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What is Deep Learning?

• “Introduction to Deep Learning” on page 1-2
• “Training Process” on page 1-3
• “Convolutional Neural Networks” on page 1-5
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Introduction to Deep Learning
Deep learning is a branch of machine learning that teaches computers to do what comes naturally to
humans: learn from experience. The learning algorithms use computational methods to “learn”
information directly from data without relying on a predetermined equation as model. Deep learning
uses neural networks to learn useful representations of data directly from images. It is a specialized
form of machine learning that can be used for applications such as classifying images, detecting
objects, recognizing speech, and describing the content. The relevant features are automatically
extracted from the images. The deep learning algorithms can be applied to supervised and
unsupervised learning. These algorithms scale with data, that is, the performance of the network
improves with size of the data.

1 What is Deep Learning?
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Training Process
You can train deep learning neural networks for classification tasks by using methods such as training
from scratch, or by transfer learning, or by feature extraction.

Training from Scratch
Training a deep learning neural network from scratch requires a large amount of labeled data.To
create the network architecture by using Neural Network Toolbox™, you can use the built-in layers,
define your own layers, or import layers from Caffe models. The neural network is then trained by
using the large amounts of labeled data. Use trained network for predicting or classifying the
unlabeled data. These networks can take few days or couple of weeks to train. Therefore, it is not a
commonly used method for training networks.

For more information, see “Get Started with Transfer Learning”.

Transfer Learning
Transfer learning is used for cases where there is lack of labeled data. The existing network
architectures, trained for scenarios with large amounts of labeled data, are used for this approach.
The parameters of pretrained networks are modified to fit the unlabeled data. Therefore, transfer
learning is used for transferring knowledge across various tasks. You can train or modify these
networks faster so it is the most widely used training approach for deep learning applications.

For more information, see “Get Started with Transfer Learning”

 Training Process
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Feature Extraction
Layers in deep learning networks are trained for extracting features from the input data. This
approach uses the network as a feature extractor. The features extracted after the training process
can be put into various machine learning models such as Support Vector Machines (SVM).

1 What is Deep Learning?
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Convolutional Neural Networks
Convolutional neural networks (CNNs) are one of the most commonly used deep learning
networks.They are feedforward artificial neural networks inspired by the animal's visual cortex.
These networks are designed for data with spatial and temporal information.Therefore, convolutional
neural networks are widely used in image and video recognition, speech recognition, and natural
language processing. The architecture of convolution neural network consists of various layers which
convert the raw input pixels into a class score.

For more details, see “Learn About Convolutional Neural Networks”.

You can train CNNs from scratch, by transfer learning, or by feature extraction. You can then use the
trained network for classification or regression applications.

For more details on training CNNs, see “Pretrained Deep Neural Networks” .

For more details on deep learning, training process, and CNNs, see Deep Learning Onramp.

 Convolutional Neural Networks
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Deep Learning Processor IP Core Architecture
Deep Learning HDL Toolbox provides a target-independent generic deep learning processor IP core
that you can deploy to any custom platform. You can reuse the deep learning processor IP core and
share it to accommodate deep neural networks that have various layer sizes and parameters. Use this
deep learning processor IP core to rapidly prototype deep neural networks from MATLAB and deploy
the network to FPGAs.

This image shows the deep learning processor IP core architecture:

To illustrate the deep learning processor IP core architecture, consider an image classification
example.

DDR Memory
You can store the input images, weights, and output images in the external DDR memory. The
processor consists of three AXI4 master interfaces that communicate with the external memory. You
can use one of the AXI4 Master interfaces to load the input images onto the processing modules. The
compile method generates the weight data. To retrieve the activation data from the DDR , see
“External Memory Data Format” on page 12-9. You can write the weight data to a deployment file
and use the deployment file to initialize the generated deep learning processor. For more information,
see “Initialize Deployed Deep Learning Processor Without Using a MATLAB Connection” on page 5-
9.

2 Deep Learning Processor
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Memory Access Arbitrator Modules
The activation and weight memory access arbitrator modules use AXI Master interface to read and
write weights and activation data to and from the processing modules. The profiler AXI Master
interface reads and writes profiler timing data and instructions to the profiler module.

Convolution Kernel
The Conv Kernel implements layers that have a convolution layer output format. The two AXI4
master interfaces provide the weights and activations for the layer to the Conv Kernel. The Conv
Kernel then performs the implemented layer operation on the input image. This kernel is generic
because it can support tensors and shapes of various sizes. For a list of layers with the conv output
format, see “Supported Layers” on page 7-13. For a list of the conv kernel properties, see
dlhdl.ProcessorConfig.

Top-Level Scheduler Module
The top-level scheduler module schedules what instructions to run, what data to read from DDR, and
when to read the data from DDR. The scheduler module acts as the central computer in a distributed
computer architecture that distributes instructions to the processing modules. For example, if the
network has a convolution layer, fully connected layer, and a multiplication layer the scheduler:

• Schedules the processing and data read instructions for the convolution layer and sends them to
the conv kernel.

• Schedules the processing and data read instructions for the fully connected layer and sends them
to the FC kernel.

• Schedules the processing and data read instructions for the multiplication layer and sends them to
the custom kernel.

Fully Connected Kernel
The fully connected (FC) kernel implements layers that have a fully connected layer output format.
The two AXI4 master interfaces provide the weights and activations to the FC Kernel. The FC
Kernel then performs the fully-connected layer operation on the input image. This kernel is also
generic because it can support tensors and shapes of various sizes. For a list of layers with FC output
format, see “Supported Layers” on page 7-13. For a list of the FC Kernel properties, see
dlhdl.ProcessorConfig.

Custom Kernel
The custom kernel module implements layers that are registered as a custom layer by using the
registerCustomLayer method. To learn how to create, register, and validate your own custom
layers, see “Register, Validate, and Deploy Custom Natural Logarithm Layer Network to FPGA” on
page 8-35. For example, the addition layer, multiplication layer, resize2dlayer, and so on are
implemented on the custom kernel module. For a list of layers implemented on this module, see
“Supported Layers” on page 7-13. For a list of the Custom Kernel properties, see
dlhdl.ProcessorConfig.

 Deep Learning Processor IP Core Architecture

2-3



Profiler Utilities
When you set the Profiler argument of the predict or predictAndUpdateState methods to on,
the profiler module collects information from the kernel, such as the Conv Kernel start and stop
times, FC Kernel start and stop times, and so on. The profiler module uses this information to create
a profiler table with these results. For more information, see “Profile Inference Run” on page 5-4.

See Also
dlhdl.ProcessorConfig | compile

More About
• “Custom Processor Configuration Workflow” on page 8-2
• “Deep Learning Processor IP Core” on page 12-5
• “Use the Compiler Output for System Integration” on page 12-6
• “External Memory Data Format” on page 12-9

2 Deep Learning Processor

2-4



Applications and Examples

3



MATLAB Controlled Deep Learning Processor
To rapidly prototype the deep learning networks on FPGAs from MATLAB, use a MATLAB controlled
deep learning processor. The processor integrates the generic deep learning processor with the HDL
Verifier™ MATLAB as AXI Master IP. For more information on:

• Generic deep learning processor IP, see “Generate Custom Generic Deep Learning Processor IP
Core” on page 12-2 .

• MATLAB as AXI Master IP, see “Set Up for AXI Manager” (HDL Verifier) .

You can use this processor to run neural networks with various inputs, weights, and biases on the
same FPGA platform because the deep learning processor IP core can handle tensors and shapes of
any sizes. Before you use the MATLAB as AXI Master, make sure that you have installed the HDL
Verifier support packages for the FPGA boards. This figure shows the MATLAB controlled deep
learning processor architecture.

To integrate the generic deep learning processor IP with the MATLAB as AXI Master, use the AXI4
Slave interface of the deep learning processor IP core. By using a JTAG or PCI express interface, the
IP responds to read or write commands from MATLAB. Therefore, you can use the MATLAB
controlled deep learning processor to deploy the deep learning neural network to the FPGA boards
from MATLAB, perform operations specified by the network architecture, and then return the
predicted results to MATLAB. For example, see “Image Classification Using DAG Network Deployed
to FPGA” on page 10-146.

3 Applications and Examples
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Deep Learning on FPGA Overview

• “Deep Learning on FPGA Workflow” on page 4-2
• “Deep Learning on FPGA Solution” on page 4-4
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Deep Learning on FPGA Workflow
This figure illustrates deep learning on FPGA workflow.

To use the workflow:

1 Load deep learning neural network

You can load the various deep learning neural networks such as Alexnet, VGG and GoogleNet
onto the MATLAB framework. When you compile the network, the network parameters are saved
into a structure that consists of NetConfigs and layerConfigs. NetConfigs consists of the
weights and biases of the trained network. layerConfig consists of various configuration values
of the trained network.

2 Modify pretrained neural network on MATLAB using transfer learning

The internal network developed on the MATLAB framework is trained and modified according to
the parameters of the external neural network. See also “Get Started with Transfer Learning”.

3 Compile user network

Compilation of the user network usually begins with validating the architecture, types of layers
present , data type of input and output parameters, and maximum number of activations. This
FPGA solution supports series network architecture with data types of single and int8. For more
details, see "Product Description". If the user network features are different, the compiler
produces an error and stops. The compiler also performs sanity check by using weight
compression and weight quantization.

4 Deploy on target FPGA board

By using specific APIs and the NetConfigs and layerConfigs, deploying the compiled
network converts the user-trained network into a fixed bitstream and then programs the
bitstream on the target FPGA.

5 Predict outcome

To classify objects in the input image, use the deployed framework on the FPGA board.

4 Deep Learning on FPGA Overview
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See Also
“Deep Learning on FPGA Solution” on page 4-4
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Deep Learning on FPGA Solution
The deep learning on field programable gate array (FPGA) solution provides you with an end-to-end
workflow to compile, deploy, profile and debug your custom pretrained deep learning networks. You
can also generate a custom deep learning processor IP core that you can integrate into your custom
reference design.

This figure shows the MATLAB based deep learning on FPGA solution.

The workflow is:

• Generate the external memory address map by using the compile function.
• Retrieve the network layer latency and overall network performance in frames per second(FPS) by

using the profiler and debugger.
• Generate a custom deep learning processor IP core.
• Integrate the generated IP core into your custom reference design.

Generate the external memory address map by using the compiler. Retrieve the network layer latency
and overall network performance in frames per second (FPS) by using the profiler and debugger.
Generate a custom deep learning processor IP core and integrate the generated IP core into your
custom reference design.

Advantages of Deep Learning on FPGA
FPGAs offer several advantages over a graphics processing unit (GPU) for deep learning applications.

• High performance by providing high throughput and low latency.
• Low power consumption by enabling you to fine-tune the hardware to your desired application.
• Cost effective because you can integrate additional capabilities on the same chip, which also saves

costs and board space.

Deep Learning on FPGA Workflows
Based on your goals, use the information in this table to choose your workflow.

4 Deep Learning on FPGA Overview
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Goal Workflow
Run a pretrained series network on your target
FPGA board.

“Prototype Deep Learning Networks on FPGA
and SoC Devices” on page 5-2

Obtain the performance of your pretrained series
network for a preconfigured deep learning
processor.

“Estimate Performance of Deep Learning
Network” on page 8-3

Customize the deep learning processor to meet
your resource utilization requirements.

“Estimate Resource Utilization for Custom
Processor Configuration” on page 8-10

Generate a custom deep learning processor for
your FPGA.

“Generate Custom Bitstream” on page 9-2

Learn about the benefits of quantizing your
pretrained series networks.

“Quantization of Deep Neural Networks” on page
11-2

Compare the accuracy of your quantized
pretrained series networks against your single
data type pretrained series network.

“Validation” on page 11-15

Run a quantized pretrained series network on
your target FPGA board.

“Code Generation and Deployment” on page 11-
18

 Deep Learning on FPGA Solution
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Workflow and APIS

• “Prototype Deep Learning Networks on FPGA and SoC Devices” on page 5-2
• “Profile Inference Run” on page 5-4
• “Multiple Frame Support” on page 5-7
• “Initialize Deployed Deep Learning Processor Without Using a MATLAB Connection”

on page 5-9
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Prototype Deep Learning Networks on FPGA and SoC Devices
To prototype and deploy your custom series deep learning network, create an object of class
dlhdl.Workflow. Use this object to:

• Compile and deploy the deep learning network on specified target FPGA or SoC board by using
the deploy function.

• Retrieve the bitstream resource utilization by using the getBuildInfo function.
• Execute the deployed deep learning network and predict the classification of input images by

using the predict function.
• Calculate the speed and profile of the deployed deep learning network by using the predict

function.

This workflow illustrates deploying your deep learning network to the FPGA boards.

5 Workflow and APIS
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See Also
dlhdl.Workflow | dlhdl.Target

More About
• “Get Started with Deep Learning FPGA Deployment on Xilinx ZCU102 SoC” on page 10-6
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Profile Inference Run
This example shows how to retrieve the prediction and profiler results for the ResNet-18 network.
View the network prediction and performance data for the layers, convolution module and fully
connected modules in your pretrained deep learning network.

1 Create an object of class Workflow by using the dlhdl.Workflow class.

See, “Create Workflow Object by using Property Name Value Pairs”.
2 Set a pretrained deep learning network and bitstream for the workflow object.

See, “Create Workflow Object by using Property Name Value Pairs”.
3 Create an object of class dlhdl.Target and specify the target vendor and interface. See,

dlhdl.Target.
4 To deploy the network on a specified target FPGA board, call the deploy method for the

workflow object. See, deploy.
5 Call the predict function for the workflow object. Provide an array of images as the

InputImage parameter. Provide arguments to turn on the profiler. See “Classify Images on an
FPGA Using a Quantized DAG Network”.

The labels classifying the images are stored in a structure struct and displayed on the screen.
The performance parameters of speed and latency are returned in a structure struct.

Use this image to run this code:
snet = resnet18;
hT = dlhdl.Target('Xilinx','Interface','Ethernet');
hW = dlhdl.Workflow('Net',snet,'Bitstream','zcu102_single','Target',hT);
hW.deploy;
image = imread('zebra.jpeg');
inputImg = imresize(image, [224, 224]);
imshow(inputImg);
[prediction, speed] = hW.predict(single(inputImg),'Profile','on');
[val, idx] = max(prediction);
snet.Layers(end).ClassNames{idx}

### Finished writing input activations.
### Running single input activations.

5 Workflow and APIS
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              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   23659630                  0.10754                       1           23659630              9.3
    conv1                  2224115                  0.01011 
    pool1                   572867                  0.00260 
    res2a_branch2a          972699                  0.00442 
    res2a_branch2b          972568                  0.00442 
    res2a                   209312                  0.00095 
    res2b_branch2a          972733                  0.00442 
    res2b_branch2b          973022                  0.00442 
    res2b                   209736                  0.00095 
    res3a_branch2a          747507                  0.00340 
    res3a_branch2b          904291                  0.00411 
    res3a_branch1           538763                  0.00245 
    res3a                   104750                  0.00048 
    res3b_branch2a          904389                  0.00411 
    res3b_branch2b          904367                  0.00411 
    res3b                   104886                  0.00048 
    res4a_branch2a          485682                  0.00221 
    res4a_branch2b          880001                  0.00400 
    res4a_branch1           486429                  0.00221 
    res4a                    52628                  0.00024 
    res4b_branch2a          880053                  0.00400 
    res4b_branch2b          880035                  0.00400 
    res4b                    52478                  0.00024 
    res5a_branch2a         1056299                  0.00480 
    res5a_branch2b         2056857                  0.00935 
    res5a_branch1          1056510                  0.00480 
    res5a                    26170                  0.00012 
    res5b_branch2a         2057203                  0.00935 
    res5b_branch2b         2057659                  0.00935 
    res5b                    26381                  0.00012 
    pool5                    71405                  0.00032 
    fc1000                  216155                  0.00098 
 * The clock frequency of the DL processor is: 220MHz
 

The profiler data returns these parameters and their values:

• LastFrameLatency(cycles) — Total number of clock cycles for previous frame execution.
• Clock frequency — Clock frequency information is retrieved from the bitstream that was used to

deploy the network to the target board. For example, the profiler returns * The clock
frequency of the DL processor is: 220MHz. The clock frequency of 220 MHz is retrieved
from the zcu102_single bitstream.

• LastFrameLatency(seconds) — Total number of seconds for previous frame execution. The
total time is calculated as LastFrameLatency(cycles)/Clock Frequency. For example the
conv_module LastFrameLatency(seconds) is calculated as 2224115/(220*10^6).

• FramesNum — Total number of input frames to the network. This value will be used in the
calculation of Frames/s.

• Total Latency — Total number of clock cycles to execute all the network layers and modules for
FramesNum.

• Frames/s — Number of frames processed in one second by the network. The total Frames/s is
calculated as (FramesNum*Clock Frequency)/Total Latency. For example the Frames/s in
the example is calculated as (1*220*10^6)/23659630.

See Also
dlhdl.Target | dlhdl.Workflow | predict

More About
• “Prototype Deep Learning Networks on FPGA and SoC Devices” on page 5-2
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• “Profile Network for Performance Improvement” on page 10-47
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Multiple Frame Support
Deep Learning HDL Toolbox supports multiple frame mode enabling you to write multiple images into
the double data rate (DDR) memory and read back multiple results at the same time. To improve the
performance of your deployed deep learning networks, use multiple frame mode.

Input DDR Format
To format input images to meet the multiple frame input DDR format, you must have:

• The start address of the input data for the DDR
• The DDR offset for a single input image frame

This information is automatically generated by the compile method. For more information on the
generated DDR address offsets, see “Use the Compiler Output for System Integration” on page 12-
6.

You can also specify the maximum number of input frames as an optional argument in the compile
method. For more information, see “Generate DDR Memory Offsets Based On Number of Input
Frames”.

This graphic shows the format of the input area of the DDR for multiple input images.

Output DDR Format
To retrieve the results for multiple image inputs from the output area of the DDR, you must have:

• The start address of the output area of the DDR
• The DDR offset of a single result

The output results must be formatted as a multiple of the FC output feature size. The information and
formatting are generated by the compile method. For more information on the generated DDR
address offsets, see “External Memory Address Map” on page 12-6.

This graphic shows the formatting of the output area of the DDR memory.
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Manually Enable Multiple Frame Mode
After the deep learning network has been deployed, you can manually enable the multiple frame
mode by writing the number of frames through a network configuration (NC) port. To manually enter
the multiple frame mode at the MATLAB command line enter:
dnnfpga.hwutils.writeSignal(1, dnnfpga.hwutils.numTo8Hex(addrMap('FrameCount')),15,hT);

addrMap('FrameCount') returns the AXI register address for FrameCount, 15 is the number of
images, and hT represents the dlhdl.Target class that contains the board definition and board
interface definition. For more information about the AXI register addresses, see “Deep Learning
Processor IP Core Report” on page 12-14.

See Also
dlhdl.Target | dlhdl.Workflow | compile

More About
• “Prototype Deep Learning Networks on FPGA and SoC Devices” on page 5-2
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Initialize Deployed Deep Learning Processor Without Using a
MATLAB Connection

Generate a file that has instructions to communicate with the deployed deep learning processor IP
core by using Deep Learning HDL Toolbox. Initialize the deployed deep learning processor IP core
without a MATLAB connection by using a utility to parse and execute the instructions in the
generated file.

Prerequisites
• Deep Learning HDL Toolbox Support Package for Intel® FPGA and SoC Devices

or Deep Learning HDL Toolbox Support Package for Xilinx® FPGA and SoC Devices
• Set up a secure digital (SD) card by using the guided SD card setup. For Intel boards, see “Guided

SD Card Set Up” (Deep Learning HDL Toolbox Support Package for Intel FPGA and SoC Devices).
For Xilinx boards, see “Guided SD Card Set Up” (Deep Learning HDL Toolbox Support Package for
Xilinx FPGA and SoC Devices).

Generate File
To generate a file that has the instructions to program and initialize the generated deep learning
processor IP configuration, set the deployment target to File by using the Target method of the
dlhdl.Workflow object. For example, this code generates a dlhdl.Workflow object that has the
ResNet-18 convolutional neural network as the network, zcu102_single as the target bitstream,
and deploys the instructions to a file that is called zcu102socinitdata.dln.
hTarget = dlhdl.Target('Xilinx',Interface = 'File', Filename = 'zcu102socinitdata.dln');
hW = dlhdl.Workflow(Network = resnet18, Bitstream = 'zcu102_single', Target = hTarget);
hW.compile;
hW.deploy;

When you use the deploy method of the dlhdl.Workflow object, and the interface option for
dlhdl.Target is set to File, the dlhdl.Workflow object and associated instructions are written
to the file whose name is in Filename.

When you do not enter the file name for the dlhdl.Target object, the name of the created file is the
bitstream name. For example, in this code the generated file name is zcu102_single.dln.
hTarget = dlhdl.Target('Xilinx',Interface = 'File');
hW = dlhdl.Workflow(Network = resnet18, Bitstream = 'zcu102_single', Target = hTarget);
hW.compile;
hW.deploy;

Generated File Structure
The generated file is a binary file that consists of:

• A header section that contains information such as the date and time the file was generated, Deep
Learning HDL Toolbox version, DDR address range, and so on.

• A start of data (SOD) section that indicates the start of instructions to read and write data.
• Data section that has AXI read and write transactions.
• An end of data command (EOD) that marks the end of the file.

 Initialize Deployed Deep Learning Processor Without Using a MATLAB Connection
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Header Section Information

This table lists the information available in the file header section. Strings are null terminated and
uint32 data types are stored in reverse byte order. When your script reads uint32 data types, read
the data from right to left. For example, 0xa0000000 is stored in the generated files as 00 00 00
A0.

Field Data Type Example Information
File version string 'MWDLNV2'
Date and time string '25-Oct-2021 12:44:03'
Deep Learning HDL Toolbox
name

string Deep Learning HDL Toolbox

Deep Learning HDL Toolbox
version

string '1.2'

Deep Learning HDL Toolbox
release information

string 'R2022a'

Deep Learning HDL Toolbox
date

string '30-Sep-2021'

Deep learning processor base
address

uint32 0xa0000000

Deep learning processor
address range

uint32 0x00010000

DDR memory base address uint32 0x80000000
DDR memory address range uint32 0x20000000
Target device platform string 'Xilinx'
Device tree node name for deep
learning processor IP core
transmit

string 'mwipcore_dl0:mmrw0'

Device tree node name for deep
learning processor IP core
receive

string 'mwipcore_dl0:mmrd0'

Device tree node name for DDR
memory transmit

string 'mwipcore_ddr0:mm2s0'

Device tree node name for DDR
memory receive

string 'mwipcore_ddr0:s2mm0'

This image shows the header information section of the generated file.
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Data Section

After the header section, each block starts with a three-letter command, listed in this table:

Field Type Notes
SOD string Start of data
EOD string End of data
TXT string Text field only
WRD string Data to write
RDD string Data to read

Read Data Command

After detecting the SOD command, check for read commands. The read data command appears in the
generated file when you are waiting for a done flag from the deep learning processor. When the read
command is executed:

• A while loop is started.
• A read is executed from a single register.

The read command and while loop end when the value of the data read from the register is equal to
the value of the data in the data-to-read section of the read command.

The read data command follows this format:

• 'RDD.', a null terminated string indicating start of the read command.
• 'Text description.', a null terminated string that indicated the address from where the data

is read and length of the data to be read.
• Hexadecimal representation of the register address from where data is read. This data is specified

as a uint32 data type.
• Hexadecimal representation of the length of data to be read. This data is specified as a uint32

data type. The length data is the number of 32-bit data packets to be read. For example, a length
value of one indicates one 32-bit data packet to read.

• Hexadecimal representation of the data to be read. This data is specified as a uint32 data type.
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In the generated file, uint32 data types are stored in reverse byte order. When your script reads
uint32 data types, read the data from right to left. For example, 0xa0000184 is stored in the
generated files as 84 01 00 A0.

This image shows a read instruction in the generated file and the structure of the read data
command. RDD.RD@ADDR:0xa0000184 Length:1. 0xa0000184 0x00000001 0x00000001.

Write Data Command

After detecting the SOD command, check for write commands.

The write data command follows this format:

• 'WRD.', a null terminated string indicating start of the write command.
• 'Text description.', a null terminated string that indicated the address from where the data

is read and length of the data to be read
• Hexadecimal representation of the register address where data is to be written. This data is
specified as a uint32 data type.

• Hexadecimal representation of the length of data to write. This data is specified as a uint32 data
type. The length data is the number of 32-bit data packets to write. For example, a length value of
36 indicates 36 32-bit data packets to write. When there are N data packets to write, the write
data format in the generated file after the text description field is address data, length data, data
packet 1, data packet 2,…, and data packet N.

• Hexadecimal representation of the data to write. This data is specified as a uint32 data type.

In the generated file, uint32 data types are stored in reverse byte order. When your script reads
uint32 data types, read the data from right to left. For example, 0xa0000184 is stored in the
generated files as 84 01 00 A0.

This image shows a write instruction in the generated file and the structure of the write data
command. WRD.WR@ADDR:0x81800000 Len:36. 0x81800000 0x00000024
0x00000084.....0x00000003. In this example, there are 36 data packets to write. The first data
packet is 0x00000084 and the last data packet is 0x00000003.
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Initiate Deployed Deep Learning Processor IP Core
To initiate the deployed deep learning processor IP core, create a script to parse the generated file
and extract the instructions to program the deep learning processor IP core. The script must perform
these actions:

1 Take the generated file as an input and open the generated file.
2 Extract the header information.
3 Detect the start of data (SOD) command. Once the SOD command is detected:

• Read data by extracting the address, length of data to be read, and data to read information
from the read packet structure. Use the readmemory function with the address and length as
input arguments.

• Write data by extracting the write data address and data to write information from the write
packet structure. Use the writememory function with the address and data to write as input
arguments.

4 Detect the end of data (EOD) command and close the generated file.

See Also
dlhdl.Target | dlhdl.Workflow | compile | deploy
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Related Examples
• “Deploy Simple Adder Network by using MATLAB Deployment Script and Deployment

Instructions File” on page 10-223

5 Workflow and APIS

5-14



Fast MATLAB to FPGA Connection Using
LIBIIO/Ethernet

6



LIBIIO/Ethernet Connection Based Deep Learning Network
Deployment

In this section...
“Ethernet Interface” on page 6-2
“LIBIIO/Ethernet Performance” on page 6-2

Ethernet Interface
The Ethernet interface leverages an ARM processor to send and receive information from the
deployed deep learning network running on the FPGA. The ARM processor runs on a Linux operating
system. You can use the Linux operating system services to interact with the FPGA. When you use the
Ethernet interface, the bitstream is downloaded to the SD card. The bitstream is persistent through
power cycles and is reprogrammed each time the FPGA is turned on. The ARM processor is
configured with the correct device tree when the bitstream is programmed.

To communicate with the design running on the FPGA, MATLAB leverages the Ethernet connection
between the host computer and ARM processor. The ARM processor runs a LIBIIO service, which
communicates with a Datamover IP in the FPGA design. You use the Datamover IP for fast data
transfers between the host computer and FPGA, which is useful when prototyping large deep
learning networks that have long transfer times over JTAG. The ARM processor generates the read
and write transactions to access memory locations in the onboard memory and deep learning
processor.

This figure shows the high-level architecture of the Ethernet interface.

You can configure your dlhdl.Workflow object hardware interface to use an Ethernet connection at
the time of the workflow object creation. For more information, see “Create Target Object That Has
an Ethernet Interface and Set IP Address”.

LIBIIO/Ethernet Performance
The improvement in performance speed of JTAG compared to LIBIIO/Ethernet is listed in this table.

Transfer Speed JTAG IIO Speedup
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Write Transfer Speed 225 kB/s 33 MB/s Approximately 150x
Read Transfer Speed 162 kB/s 32 MB/s Approximately 200x

dlhdl.Target

More About
• “Accelerate Prototyping Workflow for Large Networks by Using Ethernet” on page 10-82
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Supported Networks, Layers, Boards, and Tools
In this section...
“Supported Pretrained Networks” on page 7-2
“Supported Layers” on page 7-13
“Supported Boards” on page 7-31
“Third-Party Synthesis Tools and Version Support” on page 7-31
“Image Input Layer Normalization Hardware Implementation” on page 7-31

Supported Pretrained Networks
Deep Learning HDL Toolbox supports code generation for series convolutional neural networks
(CNNs or ConvNets). You can generate code for any trained CNN whose computational layers are
supported for code generation. For a full list, see “Supported Layers” on page 7-13. You can use one
of the pretrained networks listed in the table to generate code for your target Intel or Xilinx FPGA
boards.

Networ
k

Networ
k
Descrip
tion

Type Single Data Type (with
Shipping Bitstreams)

INT8 data type (with
Shipping Bitstreams)

Applicat
ion
Area

   ZCU102 ZC706 Arria10
SoC

ZCU102 ZC706 Arria10
SoC

Classific
ation

AlexNet AlexNet
convoluti
onal
neural
network.

Series
Network

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

Classific
ation
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LogoNet Logo
recogniti
on
network
(LogoNe
t) is a
MATLAB
develope
d logo
identific
ation
network.
For more
informati
on, see
“Logo
Recognit
ion
Network
”.

Series
Network

Yes Yes Yes Yes Yes Yes Classific
ation

DigitsNe
t

Digit
classifica
tion
network.
See
“Create
Simple
Deep
Learning
Network
for
Classific
ation”

Series
Network

Yes Yes Yes Yes Yes Yes Classific
ation
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Lane
detectio
n

LaneNet
convoluti
onal
neural
network.
For more
informati
on, see
“Deploy
Transfer
Learning
Network
for Lane
Detectio
n” on
page 10-
17.

Series
Network

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

Classific
ation

VGG-16 VGG-16
convoluti
onal
neural
network.
For the
pretrain
ed
VGG-16
model,
see
vgg16.

Series
Network

No.
Network
exceeds
PL DDR
memory
size

No.
Network
exceeds
FC
module
memory
size.

Yes Yes No.
Network
exceeds
FC
module
memory
size.

Yes Classific
ation

VGG-19 VGG-19
convoluti
onal
neural
network.
For the
pretrain
ed
VGG-19
model,
see
vgg19 .

Series
Network

No.
Network
exceeds
PL DDR
memory
size

No.
Network
exceeds
FC
module
memory
size.

Yes Yes No.
Network
exceeds
FC
module
memory
size.

Yes Classific
ation
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Darknet-
19

Darknet-
19
convoluti
onal
neural
network.
For the
pretrain
ed
darknet-
19
model,
see
darknet
19.

Series
Network

Yes Yes Yes Yes Yes Yes Classific
ation

Radar
Classific
ation

Convolut
ional
neural
network
that uses
micro-
Doppler
signatur
es to
identify
and
classify
the
object.
For more
informati
on, see
“Bicyclis
t and
Pedestri
an
Classific
ation by
Using
FPGA”
on page
10-51.

Series
Network

Yes Yes Yes Yes Yes Yes Classific
ation
and
Software
Defined
Radio
(SDR)
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Defect
Detectio
n
snet_de
fnet

snet_de
fnet is
a custom
AlexNet
network
used to
identify
and
classify
defects.
For more
informati
on, see
“Defect
Detectio
n” on
page 10-
30.

Series
Network

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

Classific
ation

Defect
Detectio
n
snet_bl
emdetne
t

snet_bl
emdetne
t is a
custom
convoluti
onal
neural
network
used to
identify
and
classify
defects.
For more
informati
on, see
“Defect
Detectio
n” on
page 10-
30.

Series
Network

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

Classific
ation
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DarkNet
-53

Darknet-
53
convoluti
onal
neural
network.
For the
pretrain
ed
DarkNet-
53
model,
see
darknet
53.

Directed
acyclic
graph
(DAG)
network
based

Yes Yes Yes Yes Yes No Classific
ation

ResNet-
18

ResNet-1
8
convoluti
onal
neural
network.
For the
pretrain
ed
ResNet-1
8 model,
see
resnet1
8.

Directed
acyclic
graph
(DAG)
network
based

Yes Yes Yes Yes Yes Yes Classific
ation

ResNet-
50

ResNet-5
0
convoluti
onal
neural
network.
For the
pretrain
ed
ResNet-5
0 model,
see
resnet5
0.

Directed
acyclic
graph
(DAG)
network
based

No.
Network
exceeds
PL DDR
memory
size.

No.
Network
exceeds
PL DDR
memory
size.

Yes Yes Yes Yes Classific
ation
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ResNet-
based
YOLO v2

You only
look
once
(YOLO)
is an
object
detector
that
decodes
the
predictio
ns from
a
convoluti
onal
neural
network
and
generate
s
boundin
g boxes
around
the
objects.
For more
informati
on, see
“Vehicle
Detectio
n Using
DAG
Network
Based
YOLO v2
Deploye
d to
FPGA”
on page
10-131.

Directed
acyclic
graph
(DAG)
network
based

Yes Yes Yes Yes Yes Yes Object
detectio
n
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MobileN
etV2

MobileN
et-v2
convoluti
onal
neural
network.
For the
pretrain
ed
MobileN
et-v2
model,
see
mobilen
etv2.

Directed
acyclic
graph
(DAG)
network
based

Yes Yes Yes Yes Yes Yes Classific
ation

GoogLe
Net

GoogLe
Net
convoluti
onal
neural
network.
For the
pretrain
ed
GoogLe
Net
model,
see
googlen
et.

Directed
acyclic
graph
(DAG)
network
based

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

No. To
use the
bitstrea
m,
enable
the
LRNBloc
kGenera
tion
property
of the
processo
r
configur
ation for
the
bitstrea
m and
generate
the
bitstrea
m again.

Classific
ation

PoseNet Human
pose
estimatio
n
network.

Directed
acyclic
graph
(DAG)
network
based

Yes. Yes Yes Yes Yes Yes Segment
ation

 Supported Networks, Layers, Boards, and Tools

7-9



U-Net U-Net
convoluti
onal
neural
network
designed
for
semantic
image
segment
ation.

Directed
acyclic
graph
(DAG)
network
based

No. PL
DDR
memory
oversize.

No. PL
DDR
memory
oversize.

No. PL
DDR
memory
oversize.

No. PL
DDR
memory
oversize.

No. PL
DDR
memory
oversize.

Yes Segment
ation

Squeeze
Net-
based
YOLO v3

The you-
only-
look-
once
(YOLO)
v3 object
detector
is a
multi-
scale
object
detectio
n
network
that uses
a feature
extractio
n
network
and
multiple
detectio
n heads
to make
predictio
ns at
multiple
scales.

dlnetwo
rk
object

Yes Yes No No No No Object
detectio
n
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Sequenc
e-to-
sequenc
e
classifica
tion

Classify
each
time
step of
sequenc
e data
using a
long
short-
term
memory
(LSTM)
network.
See
“Run
Sequenc
e-to-
Sequenc
e
Classific
ation on
FPGAs
by Using
Deep
Learning
HDL
Toolbox”
on page
10-253.

Long
short-
term
memory
(LSTM)
network

Yes Yes No No No No Sequenc
e data
classifica
tion

 Supported Networks, Layers, Boards, and Tools

7-11



Time
series
forecasti
ng

Forecast
time
series
data
using a
long
short-
term
memory
(LSTM)
network.
See
“Run
Sequenc
e
Forecasti
ng on
FPGA by
Using
Deep
Learning
HDL
Toolbox
™” on
page 10-
267

Long
short-
term
memory
(LSTM)
network

Yes Yes No No No No Forecast
time
series
data

Word-by-
word
text
generati
on

Generate
text
word-by-
word by
using a
long
short-
term
memory
(LSTM)
network.
See
“Generat
e Word-
By-Word
Text on
FPGAs
by Using
Deep
Learning
HDL
Toolbox”
on page
10-260.

Long
short-
term
memory
(LSTM)
network

Yes Yes No No No No Sequenc
e data
predictio
n
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Supported Layers
Deep Learning HDL Toolbox supports the layers listed in these tables.

Input Layers

Layer Layer Type Hardware
(HW) or
Software(SW)

Description and
Limitations

INT8 Compatible

imageInputLayer

SW An image input layer
inputs 2-D images to a
network and applies
data normalization. The
normalization options
zero-center and
zscore can run on
hardware if the
compile method
HardwareNormalizat
ion argument is
enabled and the input
data is of single data
type. If the
HardwareNormalizat
ion option is not
enabled or the input
data type is int8 the
normalization runs in
software. Normalization
specified using a
function handle is not
supported. See “Image
Input Layer
Normalization
Hardware
Implementation” on
page 7-31. When the
Normalization
property is set to none
the activations
function cannot be used
for the
imageInputLayer.

Yes. Runs as single
datatype in SW.

featureInputLayer

SW A feature input layer
inputs feature data to a
network and applies
data normalization.

No

sequenceInputLayer

SW A sequence input layer
inputs sequence data to
a network.

No

 Supported Networks, Layers, Boards, and Tools
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Convolution and Fully Connected Layers

Layer Layer Type
Hardware (HW)
or Software(SW)

Layer Output
Format

Description and
Limitations

INT8 Compatible

convolution2dL
ayer

HW Convolution (Conv) A 2-D
convolutional layer
applies sliding
convolutional
filters to the input.

When generating
code for a network
using this layer,
these limitations
apply:

• Filter size must
be 1-36.

• Stride size must
be 1-15 and
square.

• Padding size
must be in the
range 0-8.

• Dilation factor
must be [1 1].

• Padding value
is not
supported.

Yes
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groupedConvolu
tion2dLayer

HW Convolution (Conv) A 2-D grouped
convolutional layer
separates the input
channels into
groups and applies
sliding
convolutional
filters. Use
grouped
convolutional
layers for channel-
wise separable
(also known as
depth-wise
separable)
convolution.

Code generation is
now supported for
a 2-D grouped
convolution layer
that has the
NumGroups
property set as
'channel-wise'.

When generating
code for a network
using this layer,
these limitations
apply:

• Filter size must
be 1-15 and
square. For
example [1 1]
or [14 14].
When the
NumGroups is
set as
'channel-
wise', filter
size must be
3-14.

• Stride size must
be 1-15 and
square.

• Padding size
must be in the
range 0-8.

Yes
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• Dilation factor
must be [1 1].

• When the
NumGroups is
not set as
'channel-
wise', number
of groups must
be 1 or 2.

• The input
feature number
must be greater
than a single
multiple of the
square root of
the
ConvThreadNu
mber.

• When the
NumGroups is
not set as
'channel-
wise', the
number of
filters per
group must be
a multiple of
the square root
of the
ConvThreadNu
mber.
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transposedConv
2dLayer

HW Convolution (Conv) A transposed 2-D
convolution layer
upsamples feature
maps.

When generating
code for a network
using this layer,
these limitations
apply:

• Filter size must
be 1-8 and
square.

• Stride size must
be 1-36 and
square.

• Padding size
must be in the
range 0-8.

• Padding value
is not
supported.

Yes

fullyConnected
Layer

HW Fully Connected
(FC)

A fully connected
layer multiplies the
input by a weight
matrix, and then
adds a bias vector.

When generating
code for a network
using this layer,
these limitations
apply:

• The layer input
and output size
are limited by
the values
specified in
“InputMemoryS
ize” and
“OutputMemor
ySize”.

Yes

Activation Layers

Layer Layer Type
Hardware (HW)
or Software(SW)

Layer Output
Format

Description and
Limitations

INT8 Compatible
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reluLayer
HW Layer is fused. A ReLU layer

performs a
threshold
operation to each
element of the
input where any
value less than
zero is set to zero.

A ReLU layer is
supported only
when it is
preceded by any of
these layers:

• Convolution
• Fully

Connected
• Adder

Yes

leakyReluLayer

HW Layer is fused. A leaky ReLU layer
performs a
threshold
operation where
any input value
less than zero is
multiplied by a
fixed scalar.

A leaky ReLU layer
is supported only
when it is
preceded by any of
these layers:

• Convolution
• Fully

Connected
• Adder

Yes

7 Networks and Layers
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clippedReluLay
er

HW Layer is fused. A clipped ReLU
layer performs a
threshold
operation where
any input value
less than zero is
set to zero and any
value above the
clipping ceiling is
set to that clipping
ceiling value.

A clipped ReLU
layer is supported
only when it is
preceded by any of
these layers:

• Convolution
• Fully

Connected
• Adder

Yes

tanhLayer
HW Inherit from input A hyperbolic

tangent (tanh)
activation layer
applies the tanh
function on the
layer inputs.

No

Normalization, Dropout, and Cropping Layers

Layer Layer Type
Hardware (HW)
or Software(SW)

Layer Output
Format

Description and
Limitations

INT8 Compatible

batchNormaliza
tionLayer

HW Layer is fused. A batch
normalization layer
normalizes each
input channel
across a mini-
batch.

A batch
normalization layer
is supported when
preceded by an
image input layer
or convolution
layer.

Yes
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crossChannelNo
rmalizationLay
er

HW Convolution (Conv) A channel-wise
local response
(cross-channel)
normalization layer
carries out
channel-wise
normalization.

The
WindowChannelS
ize must be in the
range of 3-9 for
code generation.

Yes. Runs as single
datatype in HW.

dropoutLayer

NoOP on inference NoOP on inference A dropout layer
randomly sets
input elements to
zero within a given
probability.

Yes
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resize2dLayer

HW Inherit from input A 2-D resize layer
resizes 2-D input
by a scale factor, to
a specified height
and width, or to
the size of a
reference input
feature map.

When generating
code for a network
using this layer,
these limitations
apply:

• The Method
property must
be set to
nearest.

• The
GeometricTra
nsformationM
ode property
must be set to
half-pixel.

• The
NearestRound
ingMode
property must
be set to
round.

• The ratio of the
output size to
input size must
be an integer
and in the
range between
two and 256.

No

Pooling and Unpooling Layers

Layer Layer Type
Hardware (HW)
or Software(SW)

Layer Output
Format

Description and
Limitations

INT8 Compatible
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maxPooling2dLa
yer

HW Convolution (Conv) A max pooling
layer performs
downsampling by
dividing the layer
input into
rectangular
pooling regions
and computing the
maximum of each
region.

When generating
code for a network
using this layer,
these limitations
apply:

• Pool size must
be 1-36.

• Stride size must
be 1-15 and
square.

• Padding size
must be in the
range 0-2.

HasUnpoolingOu
tputs is
supported. When
this parameter is
enabled, these
limitations apply
for code
generation for this
layer:

• Pool size must
be 2-by-2 or 3-
by-3.

• The stride size
must be the
same as the
filter size.

• Padding size is
not supported.

• Filter size and
stride size must
be square. For
example, [2 2].

Yes

No, when
HasUnpoolingOu
tputs is enabled.
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maxUnpooling2d
Layer

HW Convolution (Conv) A max unpooling
layer unpools the
output of a max
pooling layer.

No

averagePooling
2dLayer

HW Convolution (Conv) An average pooling
layer performs
downsampling by
dividing the layer
input into
rectangular
pooling regions
and computing the
average values of
each region.

When generating
code for a network
using this layer,
these limitations
apply:

• Pool size must
be 1-36.

• Stride size must
be 1-15 and
square.

• Padding size
must be in the
range 0-2.

Yes
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globalAverageP
ooling2dLayer

HW Convolution (Conv) A global average
pooling layer
performs
downsampling by
computing the
mean of the height
and width
dimensions of the
input.

When generating
code for a network
using this layer,
these limitations
apply:

• When the layer
is implemented
in the Conv
module, the
pool size must
be 1-36 and
square.

• Can accept
inputs of sizes
up to 15-by-15-
by-N.

Yes

Combination Layers

Layer Layer Type
Hardware (HW)
or Software(SW)

Layer Output
Format

Description and
Limitations

INT8 Compatible
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additionLayer

HW Inherit from input. An addition layer
adds inputs from
multiple neural
network layers
element-wise.

You can now
generated code for
this layer with
int8 data type
when the layer is
combined with a
Leaky ReLU or
Clipped ReLU
layer.

When generating
code for a network
using this layer,
these limitations
apply:

• Both input
layers must
have the same
output layer
format. For
example, both
layers must
have conv
output format
or fc output
format.

Yes
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depthConcatena
tionLayer

HW Inherit from input. A depth
concatenation
layer takes inputs
that have the same
height and width
and concatenates
them along the
third dimension
(the channel
dimension).

When generating
code for a network
using this layer,
these limitations
apply:

• The input
activation
feature number
must be a
multiple of the
square root of
the
“ConvThreadNu
mber”.

• Layers that
have a conv
output format
and layers that
have an FC
output format
cannot be
concatenated
together.

Yes

multiplication
Layer

HW Inherit from input A multiplication
layer multiplies
inputs from
multiple neural
network layers
element-wise.

No
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Sequence Layers

Layer Layer Type Hardware
(HW) or
Software(SW)

Description and
Limitations

INT8 Compatible

lstmLayer
HW An LSTM layer learns

long-term dependencies
between time steps in
time series and
sequence data. The
layer performs additive
interactions, which can
help improve gradient
flow over long
sequences during
training.

When generating code
for a network using this
layer, these limitations
apply:

• The input must be of
single data type.

• The OutputMode
property must be set
to sequence.

No

Output Layer

Layer Layer Type Hardware
(HW) or
Software(SW)

Description and
Limitations

INT8 Compatible
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softmaxLayer
SW and HW A softmax layer applies

a softmax function to
the input.

If the softmax layer is
implemented in
hardware:

• The inputs must be
in the range -87 to
88 .

• Softmax layer
followed by adder
layer or depth
concatenation layer
is not supported.

• The inputs to this
layer must have the
format 1-by-N, N-
by-1, 1-by-1-by-N, N-
by-1-by-1, and 1-by-
N-by-1.

• If the convolution
module of the deep
learning processor is
enabled the square
root of the
convolution thread
number must be an
integral power of
two. If not, the layer
is implemented in
software.

Yes. Runs as single
datatype in SW.

classificationLaye
r

SW A classification layer
computes the cross-
entropy loss for
multiclass classification
issues that have
mutually exclusive
classes.

Yes

regressionLayer

SW A regression layer
computes the half mean
squared error loss for
regression problems.

Yes
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sigmoidLayer
SW and HW A sigmoid layer applies

a sigmoid function to
the input.

When the data type is
single the sigmoid
layer is implemented in
the custom module of
the deep learning
processor configuration.
When generating code
for a network using this
layer, with single data
type these limitations
apply:

• The inputs must be
in the range -87 to
88 .

Runs as single datatype
in SW.

Yes. When the data type
is int8 the sigmoid
layer is implemented in
the fully connected (FC)
module of the deep
learning processor
configuration. When
generating code for a
network using this
layer, with int8 data
type these limitations
apply:

• The inputs must be
in the range -87 to
88 .

• Sigmoid layer
followed by adder
layer or depth
concatenation layer
is not supported.

• The inputs to this
layer must have the
format 1-by-N, N-
by-1, 1-by-1-by-N, N-
by-1-by-1, and 1-by-
N-by-1.

• If the convolution
module of the deep
learning processor is
enabled the square
root of the
convolution thread
number must be an
integral power of
two. If not, the layer
is implemented in
software.

Keras and ONNX Layers

Layer Layer Type
Hardware (HW)
or Software(SW)

Layer Output
Format

Description and
Limitations

INT8 Compatible
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nnet.keras.lay
er.FlattenCSty
leLayer

HW Layer will be fused Flatten activations
into 1-D layers
assuming C-style
(row-major) order.

A
nnet.keras.lay
er.FlattenCSty
leLayer is
supported only
when it is followed
by a fully
connected layer.

Yes

nnet.keras.lay
er.ZeroPadding
2dLayer

HW Layer will be
fused.

Zero padding layer
for 2-D input.

A
nnet.keras.lay
er.ZeroPadding
2dLayer is
supported only
when it is
preceded by a
convolution layer
or a maxpool layer.
Zero padding layer
is supported when
followed by a
grouped
convolution layer.

Yes

Custom Layers

Layer Layer Type
Hardware (HW)
or Software(SW)

Layer Output
Format

Description and
Limitations

INT8 Compatible

Custom Layers HW Inherit from input Custom layers,
with or without
learnable
parameters, that
you define for your
problem. To learn
how to define your
custom deep
learning layers,
see “Create Deep
Learning
Processor
Configuration for
Custom Layers” on
page 8-26 .

No
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Supported Boards
These boards are supported by Deep Learning HDL Toolbox:

• Xilinx Zynq®-7000 ZC706
• Intel Arria® 10 SoC
• Xilinx Zynq UltraScale+™ MPSoC ZCU102

Third-Party Synthesis Tools and Version Support
Deep Learning HDL Toolbox has been tested with:

• Xilinx Vivado® Design Suite 2020.2
• Intel Quartus® Prime Standard 20.1.1

Image Input Layer Normalization Hardware Implementation
To enable hardware implementation of the normalization functions for the image input layer, set the
HardwareNormalization argument of the compile method to auto or on. When
HardwareNormalization is set to auto, the compile method looks for the presence of addition and
multiplication layers to implement the normalization function on hardware. The normalization is
implemented on hardware by:

• Creating a new constant layer, This layer holds the value which is to be subtracted.
• Using existing addition and multiplication layers. The layers to be used depends on the

normalization function being implemented.

Constant Layer Buffer Content

This table describes the value stored in the constant layer buffer.

Normalization Function Number of Constants Constant Layer Buffer Value
zerocenter 1 - Mean
zscore 2 The first constant value is -

Mean. The second constant
value is 1/
StandardDeviation

See Also

More About
• “Configure FPGA Boards”
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Custom Processor Configuration
Workflow

• “Custom Processor Configuration Workflow” on page 8-2
• “Estimate Performance of Deep Learning Network” on page 8-3
• “Estimate Resource Utilization for Custom Processor Configuration” on page 8-10
• “Effects of Custom Deep Learning Processor Parameters on Performance and Resource

Utilization” on page 8-17
• “Generate Custom Bitstream to Meet Custom Deep Learning Network Requirements”

on page 8-19
• “Create Deep Learning Processor Configuration for Custom Layers” on page 8-26
• “Register, Validate, and Deploy Custom Natural Logarithm Layer Network to FPGA” on page 8-35
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Custom Processor Configuration Workflow
Estimate the performance and resource utilization of your custom processor configuration by
experimenting with the settings of the deep learning processor convolution and fully connected
modules. For more information about the deep learning processor, see “Deep Learning Processor IP
Core Architecture” on page 2-2. For information about the convolution and fully connected module
parameters, see “Properties”.

After configuring your custom deep learning processor you can build and generate a custom
bitstream and custom deep learning processor IP core. For more information about the custom deep
learning processor IP core, see “Deep Learning Processor IP Core” on page 12-5.

The image shows the workflow to customize your deep learning processor, estimate the custom deep
learning processor performance and resource utilization, and build and generate your custom deep
learning processor IP core and bitstream.

See Also
dlhdl.ProcessorConfig | getModuleProperty | setModuleProperty |
estimatePerformance | estimateResources

More About
• “Deep Learning Processor IP Core Architecture” on page 2-2
• “Estimate Performance of Deep Learning Network” on page 8-3
• “Estimate Resource Utilization for Custom Processor Configuration” on page 8-10
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8-2



Estimate Performance of Deep Learning Network
To reduce the time required to design a custom deep learning network that meets performance
requirements, before deploying the network, analyze layer level latencies. Compare deep learning
network performances on custom bitstream processor configurations to performances on reference
(shipping) bitstream processor configurations.

To learn how to use the information in the table data from the estimatePerformance function to
calculate your network performance, see “Profile Inference Run” on page 5-4.

Estimate Performance of Custom Deep Learning Network for Custom
Processor Configuration
This example shows how to calculate the performance of a deep learning network for a custom
processor configuration.

1 Create a file in your current working folder called getLogoNetwork.m. In the file, enter:
function net = getLogoNetwork()
 if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
    net  = data.convnet;
end

Call the function and save the result in snet.

snet = getLogoNetwork;
2 Create a dlhdl.ProcessorConfig object.

hPC = dlhdl.ProcessorConfig;
3 Call estimatePerformance with snet to retrieve the layer level latencies and performance for

the LogoNet network.

hPC.estimatePerformance(snet)

3 Memory Regions created.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   39853460                  0.19927                       1           39853460              5.0
        conv_1             6825287                  0.03413 
        maxpool_1          3755088                  0.01878 
        conv_2            10440701                  0.05220 
        maxpool_2          1447840                  0.00724 
        conv_3             9393397                  0.04697 
        maxpool_3          1765856                  0.00883 
        conv_4             1770484                  0.00885 
        maxpool_4            28098                  0.00014 
        fc_1               2644884                  0.01322 
        fc_2               1692532                  0.00846 
        fc_3                 89293                  0.00045 
 * The clock frequency of the DL processor is: 200MHz

To learn about the parameters and values returned by estimatePerformance, see .
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Evaluate Performance of Deep Learning Network on Custom Processor
Configuration

Benchmark the performance of a deep learning network on a custom bitstream configuration by
comparing it to the performance on a reference (shipping) bitstream configuration. Use the
comparison results to adjust your custom deep learning processor parameters to achieve optimum
performance.

In this example compare the performance of the ResNet-18 network on the zcu102_single
bitstream configuration to the performance on the default custom bitstream configuration.

Prerequisites

• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox Model for ResNet-18 Network

Load Pretrained Network

Load the pretrained network.

snet = resnet18;

Retrieve zcu102_single Bitstream Configuration

To retrieve the zcu102_single bitstream configuration, use the dlhdl.ProcessorConfig object.
For more information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the
processor configuration, see getModuleProperty and setModuleProperty.

hPC_shipping = dlhdl.ProcessorConfig('Bitstream',"zcu102_single")

hPC_shipping = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                   Processing Module "adder"
                            ModuleGeneration: 'on'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
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                              RunTimeControl: 'register'
                          InputDataInterface: 'External Memory'
                         OutputDataInterface: 'External Memory'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 220
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Estimate ResNet-18 Performance for zcu102_single Bitstream Configuration

To estimate the performance of the ResNet-18 DAG network, use the estimatePerformance
function of the dlhdl.ProcessorConfig object. The function returns the estimated layer latency,
network latency, and network performance in frames per second (Frames/s).

hPC_shipping.estimatePerformance(snet)

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   23634966                  0.10743                       1           23634966              9.3
    ____conv1              2165372                  0.00984 
    ____pool1               646226                  0.00294 
    ____res2a_branch2a      966221                  0.00439 
    ____res2a_branch2b      966221                  0.00439 
    ____res2a               210750                  0.00096 
    ____res2b_branch2a      966221                  0.00439 
    ____res2b_branch2b      966221                  0.00439 
    ____res2b               210750                  0.00096 
    ____res3a_branch1       540749                  0.00246 
    ____res3a_branch2a      763860                  0.00347 
    ____res3a_branch2b      919117                  0.00418 
    ____res3a               105404                  0.00048 
    ____res3b_branch2a      919117                  0.00418 
    ____res3b_branch2b      919117                  0.00418 
    ____res3b               105404                  0.00048 
    ____res4a_branch1       509261                  0.00231 
    ____res4a_branch2a      509261                  0.00231 
    ____res4a_branch2b      905421                  0.00412 
    ____res4a                52724                  0.00024 
    ____res4b_branch2a      905421                  0.00412 
    ____res4b_branch2b      905421                  0.00412 
    ____res4b                52724                  0.00024 
    ____res5a_branch1      1046605                  0.00476 
    ____res5a_branch2a     1046605                  0.00476 
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    ____res5a_branch2b     2005197                  0.00911 
    ____res5a                26368                  0.00012 
    ____res5b_branch2a     2005197                  0.00911 
    ____res5b_branch2b     2005197                  0.00911 
    ____res5b                26368                  0.00012 
    ____pool5                54594                  0.00025 
    ____fc1000              207852                  0.00094 
 * The clock frequency of the DL processor is: 220MHz

Create Custom Processor Configuration

To create a custom processor configuration, use the dlhdl.ProcessorConfig object. For more
information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the processor
configuration, see getModuleProperty and setModuleProperty.

hPC_custom = dlhdl.ProcessorConfig

hPC_custom = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                   Processing Module "adder"
                            ModuleGeneration: 'on'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
                              RunTimeControl: 'register'
                          InputDataInterface: 'External Memory'
                         OutputDataInterface: 'External Memory'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

8 Custom Processor Configuration Workflow
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Estimate ResNet-18 Performance for Custom Bitstream Configuration

To estimate the performance of the ResNet-18 DAG network, use the estimatePerformance
function of the dlhdl.ProcessorConfig object. The function returns the estimated layer latency,
network latency, and network performance in frames per second (Frames/s).

hPC_custom.estimatePerformance(snet)

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   21219873                  0.10610                       1           21219873              9.4
    ____conv1              2165372                  0.01083 
    ____pool1               646226                  0.00323 
    ____res2a_branch2a      966221                  0.00483 
    ____res2a_branch2b      966221                  0.00483 
    ____res2a               210750                  0.00105 
    ____res2b_branch2a      966221                  0.00483 
    ____res2b_branch2b      966221                  0.00483 
    ____res2b               210750                  0.00105 
    ____res3a_branch1       540749                  0.00270 
    ____res3a_branch2a      708564                  0.00354 
    ____res3a_branch2b      919117                  0.00460 
    ____res3a               105404                  0.00053 
    ____res3b_branch2a      919117                  0.00460 
    ____res3b_branch2b      919117                  0.00460 
    ____res3b               105404                  0.00053 
    ____res4a_branch1       509261                  0.00255 
    ____res4a_branch2a      509261                  0.00255 
    ____res4a_branch2b      905421                  0.00453 
    ____res4a                52724                  0.00026 
    ____res4b_branch2a      905421                  0.00453 
    ____res4b_branch2b      905421                  0.00453 
    ____res4b                52724                  0.00026 
    ____res5a_branch1       751693                  0.00376 
    ____res5a_branch2a      751693                  0.00376 
    ____res5a_branch2b     1415373                  0.00708 
    ____res5a                26368                  0.00013 
    ____res5b_branch2a     1415373                  0.00708 
    ____res5b_branch2b     1415373                  0.00708 
    ____res5b                26368                  0.00013 
    ____pool5                54594                  0.00027 
    ____fc1000              207351                  0.00104 
 * The clock frequency of the DL processor is: 200MHz

The performance of the ResNet-18 network on the custom bitstream configuration is lower than the
performance on the zcu102_single bitstream configuration. The difference between the custom
bitstream configuration and the zcu102_single bitstream configuration is the target frequency.
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Modify Custom Processor Configuration

Modify the custom processor configuration to increase the target frequency. To learn about
modifiable parameters of the processor configuration, see dlhdl.ProcessorConfig.

hPC_custom.TargetFrequency = 220;
hPC_custom

hPC_custom = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                   Processing Module "adder"
                            ModuleGeneration: 'on'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
                              RunTimeControl: 'register'
                          InputDataInterface: 'External Memory'
                         OutputDataInterface: 'External Memory'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 220
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Re-estimate ResNet-18 Performance for Modified Custom Bitstream Configuration

Estimate the performance of the ResNet-18 DAG network on the modified custom bitstream
configuration.

hPC_custom.estimatePerformance(snet)

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

8 Custom Processor Configuration Workflow
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              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   23634966                  0.10743                       1           23634966              9.3
    ____conv1              2165372                  0.00984 
    ____pool1               646226                  0.00294 
    ____res2a_branch2a      966221                  0.00439 
    ____res2a_branch2b      966221                  0.00439 
    ____res2a               210750                  0.00096 
    ____res2b_branch2a      966221                  0.00439 
    ____res2b_branch2b      966221                  0.00439 
    ____res2b               210750                  0.00096 
    ____res3a_branch1       540749                  0.00246 
    ____res3a_branch2a      763860                  0.00347 
    ____res3a_branch2b      919117                  0.00418 
    ____res3a               105404                  0.00048 
    ____res3b_branch2a      919117                  0.00418 
    ____res3b_branch2b      919117                  0.00418 
    ____res3b               105404                  0.00048 
    ____res4a_branch1       509261                  0.00231 
    ____res4a_branch2a      509261                  0.00231 
    ____res4a_branch2b      905421                  0.00412 
    ____res4a                52724                  0.00024 
    ____res4b_branch2a      905421                  0.00412 
    ____res4b_branch2b      905421                  0.00412 
    ____res4b                52724                  0.00024 
    ____res5a_branch1      1046605                  0.00476 
    ____res5a_branch2a     1046605                  0.00476 
    ____res5a_branch2b     2005197                  0.00911 
    ____res5a                26368                  0.00012 
    ____res5b_branch2a     2005197                  0.00911 
    ____res5b_branch2b     2005197                  0.00911 
    ____res5b                26368                  0.00012 
    ____pool5                54594                  0.00025 
    ____fc1000              207852                  0.00094 
 * The clock frequency of the DL processor is: 220MHz

See Also
dlhdl.ProcessorConfig | getModuleProperty | setModuleProperty |
estimatePerformance | estimateResources

More About
• “Estimate Performance of Deep Learning Network” on page 8-3
• “Estimate Resource Utilization for Custom Processor Configuration” on page 8-10
• “Effects of Custom Deep Learning Processor Parameters on Performance and Resource

Utilization” on page 8-17
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Estimate Resource Utilization for Custom Processor
Configuration

To estimate the resource utilization of a custom processor configuration, compare resource utilization
for a custom processor configuration to resource utilization of a reference (shipping) bitstream
processor configuration. Analyze the effects of custom deep learning processor parameters on
resource utilization.

Estimate Resource Utilization
Calculate resource utilization for a custom processor configuration.

1 Create a dlhdl.ProcessorConfig object.

hPC = dlhdl.ProcessorConfig

hPC = 

                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                   Processing Module "adder"
                            ModuleGeneration: 'on'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
                              RunTimeControl: 'register'
                          InputDataInterface: 'External Memory'
                         OutputDataInterface: 'External Memory'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

2 Call estimateResources to retrieve resource utilization.

hPC.estimateResources

             Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                377( 15%)        508( 56%)     234175( 86%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

The returned table contains resource utilization for the entire processor and individual modules.

8 Custom Processor Configuration Workflow
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Customize Bitstream Configuration to Meet Resource Use
Requirements

The user wants to deploy a digit recognition network with a target performance of 500 frames per
second (FPS) to a Xilinx™ ZCU102 ZU4CG device. The target device resource counts are:

• Digital signal processor (DSP) slice count - 240
• Block random access memory (BRAM) count -128

The reference (shipping) zcu102_int8 bitstream configuration is for a Xilinx ZCU102 ZU9EG
device. The default board resource counts are:

• Digital signal processor (DSP) slice count - 2520
• Block random access memory (BRAM) count -912

The default board resource counts exceed the user resource budget and is on the higher end of the
cost spectrum. You can achieve target performance and resource use budget by quantizing the target
deep learning network and customizing the custom default bitstream configuration.

In this example create a custom bitstream configuration to match your resource budget and
performance requirements.

Prerequisites

• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox Model Quantization Library

Load Pretrained Network

To load the pretrained series network, that has been trained on the Modified National Institute
Standards of Technology (MNIST) database, enter:

snet = getDigitsNetwork;

Quantize Network

To quantize the MNIST based digits network, enter:

dlquantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');
Image = imageDatastore('five_28x28.pgm','Labels','five');
dlquantObj.calibrate(Image);

Retrieve zcu102_int Bitstream Configuration

To retrieve the zcu102_int8 bitstream configuration, use the dlhdl.ProcessorConfig object.
For more information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the
processor configuration, see getModuleProperty and setModuleProperty.

hPC_reference = dlhdl.ProcessorConfig('Bitstream','zcu102_int8')

hPC_reference = 
                    Processing Module "conv"
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                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 64
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 16
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'int8'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 250
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Estimate Network Performance and Resource Utilization for zcu102_int8 Bitstream
Configuration

To estimate the performance of the digits series network, use the estimatePerformance function of
the dlhdl.ProcessorConfig object. The function returns the estimated layer latency, network
latency, and network performance in frames per second (Frames/s).

To estimate the resource use of the zcu102_int8 bitstream, use the estimateResources
function of the dlhdl.ProcessorConfig object. The function returns the estimated DSP slice and
BRAM usage.

hPC_reference.estimatePerformance(dlquantObj)

8 Custom Processor Configuration Workflow
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### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### The network includes the following layers:
     1   'imageinput'    Image Input             28×28×1 images with 'zerocenter' normalization                (SW Layer)
     2   'conv_1'        Convolution             8 3×3×1 convolutions with stride [1  1] and padding 'same'    (HW Layer)
     3   'relu_1'        ReLU                    ReLU                                                          (HW Layer)
     4   'maxpool_1'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     5   'conv_2'        Convolution             16 3×3×8 convolutions with stride [1  1] and padding 'same'   (HW Layer)
     6   'relu_2'        ReLU                    ReLU                                                          (HW Layer)
     7   'maxpool_2'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     8   'conv_3'        Convolution             32 3×3×16 convolutions with stride [1  1] and padding 'same'  (HW Layer)
     9   'relu_3'        ReLU                    ReLU                                                          (HW Layer)
    10   'fc'            Fully Connected         10 fully connected layer                                      (HW Layer)
    11   'softmax'       Softmax                 softmax                                                       (SW Layer)
    12   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes                   (SW Layer)
                                                                                                             
### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      58101                  0.00023                       1              58101           4302.9
    ____conv_1                4391                  0.00002 
    ____maxpool_1             2877                  0.00001 
    ____conv_2                2351                  0.00001 
    ____maxpool_2             2265                  0.00001 
    ____conv_3                2651                  0.00001 
    ____fc                   43566                  0.00017 
 * The clock frequency of the DL processor is: 250MHz

hPC_reference.estimateResources

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                797( 32%)        386( 43%)     142494( 52%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

The estimated performance is 4303 FPS and the estimated resource use counts are:

• Digital signal processor (DSP) slice count - 797
• Block random access memory (BRAM) count -386

The estimated DSP slice count and BRAM count use exceeds the target device resource budget.
Customize the bitstream configuration to reduce resource use.

Create Custom Bitstream Configuration

To create a custom processor configuration, use the dlhdl.ProcessorConfig object. For more
information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the processor
configuration, see getModuleProperty and setModuleProperty.
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To reduce the resource use for the custom bitstream, modify the KernelDataType for the conv,
fc, and adder modules. Modify the ConvThreadNumber to reduce DSP slice count. Reduce the
InputMemorySize and OutputMemorySize for the conv module to reduce BRAM count.

hPC_custom = dlhdl.ProcessorConfig;
hPC_custom.ProcessorDataType = 'int8';
hPC_custom.setModuleProperty('conv','ConvThreadNumber',4);
hPC_custom.setModuleProperty('conv','InputMemorySize',[30 30 1]);
hPC_custom.setModuleProperty('conv','OutputMemorySize',[30 30 1]);
hPC_custom

hPC_custom = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 4
                             InputMemorySize: [30 30 1]
                            OutputMemorySize: [30 30 1]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'int8'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''
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Estimate Network Performance and Resource Utilization for Custom Bitstream
Configuration

To estimate the performance of the digits series network, use the estimatePerformance function of
the dlhdl.ProcessorConfig object. The function returns the estimated layer latency, network
latency, and network performance in frames per second (Frames/s).

To estimate the resource use of the hPC_custom bitstream, use the estimateResources
function of the dlhdl.ProcessorConfig object. The function returns the estimated DSP slice and
BRAM usage.

hPC_custom.estimatePerformance(dlquantObj)

### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### The network includes the following layers:
     1   'imageinput'    Image Input             28×28×1 images with 'zerocenter' normalization                (SW Layer)
     2   'conv_1'        Convolution             8 3×3×1 convolutions with stride [1  1] and padding 'same'    (HW Layer)
     3   'relu_1'        ReLU                    ReLU                                                          (HW Layer)
     4   'maxpool_1'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     5   'conv_2'        Convolution             16 3×3×8 convolutions with stride [1  1] and padding 'same'   (HW Layer)
     6   'relu_2'        ReLU                    ReLU                                                          (HW Layer)
     7   'maxpool_2'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     8   'conv_3'        Convolution             32 3×3×16 convolutions with stride [1  1] and padding 'same'  (HW Layer)
     9   'relu_3'        ReLU                    ReLU                                                          (HW Layer)
    10   'fc'            Fully Connected         10 fully connected layer                                      (HW Layer)
    11   'softmax'       Softmax                 softmax                                                       (SW Layer)
    12   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes                   (SW Layer)
                                                                                                             
### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                     433577                  0.00217                       1             433577            461.3
    ____conv_1               26160                  0.00013 
    ____maxpool_1            31888                  0.00016 
    ____conv_2               44736                  0.00022 
    ____maxpool_2            22337                  0.00011 
    ____conv_3              265045                  0.00133 
    ____fc                   43411                  0.00022 
 * The clock frequency of the DL processor is: 200MHz

hPC_custom.estimateResources

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                131(  6%)        108( 12%)      56270( 21%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

The estimated performance is 461.3 FPS and the estimated resource use counts are:

 Estimate Resource Utilization for Custom Processor Configuration

8-15



• Digital signal processor (DSP) slice count - 131
• Block random access memory (BRAM) count -108

The estimated resources of the customized bitstream match the user target device resource budget
and the estimated performance matches the target network performance.

See Also
dlhdl.ProcessorConfig | getModuleProperty | setModuleProperty |
estimatePerformance | estimateResources

More About
• “Estimate Performance of Deep Learning Network” on page 8-3
• “Effects of Custom Deep Learning Processor Parameters on Performance and Resource

Utilization” on page 8-17
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Effects of Custom Deep Learning Processor Parameters on
Performance and Resource Utilization

Analyze how deep learning processor parameters affect deep learning network performance and
bitstream resource utilization. Identify parameters that help improve performance and reduce
resource utilization.

This table lists the deep learning processor parameters and their effects on performance and
resource utilization.

Deep Learning
Processor
Parameter

Deep Learning
Processor
Module

Parameter Action Effect on
Performance

Effect on
Resource
Utilization

“TargetFrequency” Base module Increase target
frequency.

Improves
performance.

Marginal increase
in lookup table
(LUT) utilization.

“ConvThreadNumb
er”

conv Increase thread
number.

Improves
performance.

Increases resource
utilization.

“InputMemorySize
”

conv Increase input
memory size.

Improves
performance.

Increases block
RAM (BRAM)
resource
utilization.

“OutputMemorySiz
e”

conv Increase output
memory size.

Improves
performance.

Increases block
RAM (BRAM)
resource
utilization.

“FeatureSizeLimit” conv Increase feature
size limit.

Improves
performance on
networks with
layers that have a
large number of
features.

Increases block
RAM (BRAM)
resource
utilization.

“FCThreadNumber
”

fc Increase thread
number.

Improves
performance.

Increases resource
utilization.

“InputMemorySize
”

fc Increase input
memory size.

Improves
performance.

Increases Block
RAM (BRAM)
resource
utilization.

“OutputMemorySiz
e”

fc Increase output
memory size.

Improves
performance.

Increases Block
RAM (BRAM)
resource
utilization.

“InputMemorySize
”

custom Increase input
memory size

Improves
performance for
DAG networks only

Increases resource
utilization for DAG
networks only.
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“OutputMemorySiz
e”

custom Increase output
memory size

Improves
performance for
DAG networks only

Increases resource
utilization for DAG
networks only.

“ProcessorDataTyp
e”

Top Level Change data type
to int8.

Improves
performance.
There could be a
drop in accuracy.

Reduces resource
utilization.

See Also
dlhdl.ProcessorConfig | getModuleProperty | setModuleProperty |
estimatePerformance | estimateResources

More About
• “Estimate Performance of Deep Learning Network” on page 8-3
• “Estimate Resource Utilization for Custom Processor Configuration” on page 8-10
• “Effects of Custom Deep Learning Processor Parameters on Performance and Resource

Utilization” on page 8-17
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Generate Custom Bitstream to Meet Custom Deep Learning
Network Requirements

Deploy your custom network that only has layers with the convolution module output format or only
layers with the fully connected module output format by generating a resource optimized custom
bitstream that satisfies your performance and resource requirements. Bitstream generated using the
default deep learning processor configuration consists of the convolution (conv), fully connected (fc),
and adder modules. The generated default bitstreams could exceed your resource utilization
requirements which could drive up costs. To generate a bitstream that consists of only the layers in
your custom deep learning network, modify the deep learning processor configuration by using the
setModuleProperty function of the dlhdl.ProcessorConfig object.

In this example, you have a network that has only layers that have the fully connected module output
format. Generate a custom bitstream that consists of the fully connected module only by removing the
convolution and adder modules from the deep learning processor configuration. To remove the
convolution and adder modules:

• Turn off the ModuleGeneration property for the individual modules in the deep learning
processor configuration.

• Use the optimizeConfigurationForNetwork function. The function takes the deep learning
network object as the input and returns an optimized custom deep learning processor
configuration.

• Rapidly verify the resource utilization of the optimized deep learning processor configuration by
using the estimateResources function.

Prerequisites

• Deep Learning HDL Toolbox™ Support Package for Xilinx™ FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Create Custom Processor Configuration

Create a custom processor configuration. Save the configuration to hPC.

hPC = dlhdl.ProcessorConfig

hPC = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
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                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Optimize Processor Configuration for a Custom Fully Connected (FC) Layer only Network

To optimize your processor configuration, create a custom fully connected layer only network. Call
the custom network fcnet.

layers = [ ...
    imageInputLayer([28 28 3],'Normalization','none','Name','input')
    fullyConnectedLayer(10,'Name','fc')
    regressionLayer('Name','output')];
layers(2).Weights = rand(10,28*28*3);
layers(2).Bias = rand(10,1);
fcnet = assembleNetwork(layers);
plot(fcnet);
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Retrieve the resource utilization for the default custom processor configuration by using
estimateResources. Retrieve the performance for the custom network fcnet by using
estimatePerformance.

hPC.estimateResources

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                381( 16%)        508( 56%)     216119( 79%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

hPC.estimatePerformance(fcnet)

### The network includes the following layers:
     1   'input'    Image Input         28×28×3 images            (SW Layer)
     2   'fc'       Fully Connected     10 fully connected layer  (HW Layer)
     3   'output'   Regression Output   mean-squared-error        (SW Layer)
                                                                
### Notice: The layer 'input' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'output' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                     137574                  0.00069                       1             137574           1453.8
    ____fc                  137574                  0.00069 
 * The clock frequency of the DL processor is: 200MHz

The target device resource counts are:
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• Digital signal processor (DSP) slice count — 240
• Block random access memory (BRAM) count — 128

The estimated performance is 1454 frames per second (FPS). The estimated resource use counts are:

• Digital signal processor (DSP) slice count — 381
• Block random access memory (BRAM) count — 508

The estimated DSP slice count and BRAM count use exceeds the target device resource budget.
Customize the bitstream configuration to reduce resource use by customizing the processor
configuration.

Customize Processor Configuration by Using ModuleGeneration Property

Create a deep learning network processor configuration object. Save it to hPC_moduleoff. Turn off
the convolution and adder modules in the custom deep learning processor configuration.

hPC_moduleoff = dlhdl.ProcessorConfig;
hPC_moduleoff.setModuleProperty('conv','ModuleGeneration','off');
hPC_moduleoff.setModuleProperty('adder','ModuleGeneration','off');

Retrieve the resource utilization for the default custom processor configuration by using
estimateResources. Retrieve the performance for the custom network fcnet by using
estimatePerformance.

hPC_moduleoff.estimateResources

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                 17(  1%)         44(  5%)      25760( 10%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

hPC_moduleoff.estimatePerformance(fcnet)

### The network includes the following layers:
     1   'input'    Image Input         28×28×3 images            (SW Layer)
     2   'fc'       Fully Connected     10 fully connected layer  (HW Layer)
     3   'output'   Regression Output   mean-squared-error        (SW Layer)
                                                                
### Notice: The layer 'input' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'output' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                     137574                  0.00069                       1             137574           1453.8
    ____fc                  137574                  0.00069 
 * The clock frequency of the DL processor is: 200MHz

The target device resource counts are:
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• Digital signal processor (DSP) slice count — 240
• Block random access memory (BRAM) count — 128

The estimated performance is 1454 frames per second (FPS). The estimated resource use counts are:

• Digital signal processor (DSP) slice count — 17
• Block random access memory (BRAM) count — 44

The estimated resources of the customized bitstream match the user target device resource budget.
The estimated performance matches the target network performance.

Customize Processor Configuration by Using optimizeConfigurationForNetwork

Create a deep learning network processor configuration object. Save it to hPC_optimized. Generate
an optimized deep learning processor configuration by using the
optimizeConfigurationForNetwork function.

hPC_optimized = dlhdl.ProcessorConfig;
hPC_optimized.optimizeConfigurationForNetwork(fcnet);

### Optimizing processor configuration for deep learning network begin.
### Note: Processing module "conv" property "ModuleGeneration" changed from "true" to "false".
### Note: Processing module "fc" property "InputMemorySize" changed from "25088" to "2352".
### Note: Processing module "fc" property "OutputMemorySize" changed from "4096" to "128".
### Note: Processing module "custom" property "ModuleGeneration" changed from "true" to "false".

                    Processing Module "conv"
                            ModuleGeneration: 'off'

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 2352
                            OutputMemorySize: 128

                  Processing Module "custom"
                            ModuleGeneration: 'off'

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''
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### Optimizing processor configuration for deep learning network complete.

Retrieve the resource utilization for the default custom processor configuration by using
estimateResources. Retrieve the performance for the custom network fcnet by using
estimatePerformance.

hPC_optimized.estimateResources

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                 17(  1%)         20(  3%)      25760( 10%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

hPC_optimized.estimatePerformance(fcnet)

### The network includes the following layers:
     1   'input'    Image Input         28×28×3 images            (SW Layer)
     2   'fc'       Fully Connected     10 fully connected layer  (HW Layer)
     3   'output'   Regression Output   mean-squared-error        (SW Layer)
                                                                
### Notice: The layer 'input' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'output' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                     137574                  0.00069                       1             137574           1453.8
    ____fc                  137574                  0.00069 
 * The clock frequency of the DL processor is: 200MHz

The target device resource counts are:

• Digital signal processor (DSP) slice count — 240
• Block random access memory (BRAM) count — 128

The estimated performance is 1454 frames per second (FPS). The estimated resource use counts are:

• Digital signal processor (DSP) slice count — 17
• Block random access memory (BRAM) count — 20

The estimated resources of the customized bitstream match the user target device resource budget.
The estimated performance matches the target network performance.

Generate Custom Bitstream

Generate a custom bitstream using the processor configuration that matches your performance and
resource requirements.

To deploy fcnet using the bitstream generated by using the ModuleOff property, uncomment this
line of code:
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%   dlhdl.buildProcessor(hPC_moduleoff)

To deploy fcnet using the bitstream generated by using the optimizeConfigurationForNetwork
function, uncomment this line of code:

%   dlhdl.buildProcessor(hPC_optimized)

See Also
dlhdl.ProcessorConfig | getModuleProperty | setModuleProperty |
estimatePerformance | estimateResources

More About
• “Estimate Performance of Deep Learning Network” on page 8-3
• “Estimate Resource Utilization for Custom Processor Configuration” on page 8-10
• “Effects of Custom Deep Learning Processor Parameters on Performance and Resource

Utilization” on page 8-17
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Create Deep Learning Processor Configuration for Custom
Layers

Deep learning networks use custom layers to perform actions such as resizing 2-D inputs by a scale
factor, performing element-wise multiplications, and so on. If your network requires layers to perform
certain actions and the layers are not provided by Deep Learning Toolbox™, create a custom layer.
Rapidly prototype, validate and deploy your networks that have custom layers by:

• Creating and registering your custom layer function and Simulink® model.
• Validating your custom layer
• Generating a custom bitstream

Deploy the network that has custom layers to a target board by using the custom bitstream

Deploy Custom Layer Networks
1 Create a custom processor configuration object by using the dlhdl.ProcessorConfig object.
2 For layers that use a custom function, create a MATLAB function and Simulink model that

replicates your custom layer function.
3 Register your custom layer function and Simulink model by using the registerCustomLayer

method.
4 Enable the registered custom layers in your custom deep learning processor configuration.
5 Simulate and verify your custom layer by using a generated verification model. Generate a

verification model by using the openCustomLayerModel method. Verify the custom layer by
using the verifyCustomLayerModel method. This step is optional.

6 Generate a custom bitstream by using the dlhdl.buildProcessor function.
7 Create a workflow object that has your custom layer network and custom bitstream by using the

dlhdl.Workflow object.
8 Compile and deploy the workflow object by using the compile and deploy methods.

Tip If you are creating a layer with multiple inputs, then you must set the NumInputs properties in
the layer constructor.

Retrieve the prediction results from the deployed network by using MATLAB.

Create a Deep learning Processor Configuration
To generate a custom processor configuration, use the dlhdl.ProcessorConfig object. The
generated deep learning processor configuration object has a custom module that contains the
preconfigured custom layers. Save the deep learning processor configuration to a variable named
hPC.

hPC = dlhdl.ProcessorConfig

hPC = 

                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
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                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Create Custom Layer MATLAB Function
Design the custom layer function by using a MATLAB function. The custom layer function must:

• Have a maximum of two inputs and one output.
• Use only element-wise operations. These operations are not element-wise operations:

• Matrix multiplication
• Flatten
• Reshape
• Concatenation
• Batch normalization

This example code shows the MATLAB function for a custom signum layer.
classdef SignumLayer < nnet.layer.Layer
    % Example custom Signum layer.
    
    properties
        testPropertyValue1 single = 3;
        testPropertyValue2 single = 4;
    end
    
    methods
        function layer = SignumLayer(name)
            % Set layer name.
            layer.Name = name;
            % Set layer description.
            layer.Description = "custom signum layer";
        end
        
        function Z = predict(layer, X)
            % Z = predict(layer, X) forwards the input data X through the
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            % layer and outputs the result Z.
            
            Z = sign(X) + layer.testPropertyValue1 + layer.testPropertyValue2;
           
        end
    end
end

Create Custom Layer Simulink Function
Design the custom layer model in Simulink. Your model design must:

• Use subsystem reference blocks only. Model reference blocks are not supported.
• Model the inputValid and outputValid signals.
• Have the same inputs and outputs as the custom layer MATLAB function.

This image shows the Simulink model for the custom signum layer.

Register Custom Layer and Model
Register an instance of the custom layer and custom layer Simulink model by using the
registerCustomLayer method.

hSignum = SignumLayer('Signum1');
registerCustomLayer(hPC, Layer = hSignum, Model = 'mySignumModel.slx');
hPC

The custom deep learning processor configuration has a Signum layer under the custom processing
module. The custom signum layer is enabled for bitstream generation.

hPC

hPC = 

                    Processing Module "conv"
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                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                 SignumLayer: 'on'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Generate Verification Model for Custom Layer
Generate a verification model for your custom layer by using the openCustomLayerModel method.
Generate a test network and test image for your custom layer network by specifying blank arguments
for the Network and InputImages arguments of the openCustomLayerModel method. The size of
the test image matches the input layer size of the created test network.

openCustomLayerModel(hPC)

### The 'Network' property is empty for the given object. An auto-generated network is provided.
### Custom layer verification model generation begin.
### Compiling network for Deep Learning FPGA prototyping ...
### Custom layer verification model generation complete.

An input image of size two-by-two-by four is created for the generated verification model. This image
shows the auto-generated network for the custom layer model.
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The openCustomLayerModel method generates a verification model file called
dnnfpgaCustomLayerVerificationModel.slx for your custom layer. The generated verification
model consists of a test bench block TB and a design under test block DUT. The testbench block
contains tests signals that are applied to your custom layer model which is a part of the design under
test block to verify the functionality of the custom layer and prediction accuracy of the network that
has the custom layer. This image shows the generated verification model blocks.

8 Custom Processor Configuration Workflow

8-30



Simulate and Validate Custom Layer Model
Before you verify your custom layer model by using the verifyCustomLayerModel method, open
the dnnfpgaCustomLayerVerificationModel.slx verification model. The
verifyCustomLayerModel method verifies the functionality of the custom layer and prediction
accuracy of the network that has the custom layer.

verifyCustomLayerModel(hPC)

### Custom layer verification model simulation and validation begin.
### Compiling Simulink model 'dnnfpgaCustomLayerVerificationModel' ...
### Complete Simulink model 'dnnfpgaCustomLayerVerificationModel' compilation.
Verification passed.
### Custom layer verification model simulation and validation complete.

Use the generated verification model to simulates, test, iterate and develop your custom kernel
Simulink model. This image shows the custom kernel development process.
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Generate Custom Bitstream
Generate a custom bitstream that has the name myCustomLayer.bit by using the
dlhdl.buildProcessor function. Save the generated bitstream to the myCustomLayer_prj
folder.
dlhdl.buildProcessor(hPC, ProjectFolder = 'myCustomLayer_prj', ProcessorName = 'myCustomLayer');

Deploy and Predict Custom Layer Network on Hardware
Deploy the custom layer network by creating a dlhdl.Workflow object with the custom layer
network as the Network argument and the custom bitstream myCustomLayer.bit as the
Bitstream argument. To retrieve the prediction results from the deployed network use MATLAB and
the predict method.

hTarget = dlhdl.Target('Xilinx','Interface','JTAG');
hW = dlhdl.Workflow(Network = myCustomNet, Bitstream =
'myCustomLayer.bit'
,
...
Target = hTarget);
hW.compile;
hW.deploy;
image = randi(255, [2,2,4]);
hW.predict(single(image),Profile =
'on'
);

Custom Layer Registration File
To reuse your verified custom layers, register them by using a custom layer registration file. Custom
registration layer files must be named dlhdl_customLayer_registration.m. The custom layer
registration file contains a list of dlhdl.CustomLayer objects. A specific board can have multiple
custom layer registration files on the MATLAB path. Do not list dlhdl.CustomLayer objects in more
than one custom layer registration file.
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When the processor configuration object is created, Deep Learning HDL Toolbox searches the
MATLAB path for files named dlhdl_customLayer_registration.m, and uses the information in
the files to populate the registered custom layer information. List only custom layers in the custom
layer registration file after they have been verified by using the verifyCustomLayerModel method.

This script is an example of a dlhdl_customLayer_registration.m file.
function customLayerList = dlhdl_customLayer_registration
% Custom layer registration file
% 1. Any registration file with this name on MATLAB path will be picked up.
% 2. Registration file returns a cell array of dlhdl.CustomLayer
% object which are used to register custom layer information for Deep 
% Learning HDL Toolbox workflow
% 3. Use dlhdl.CustomLayer object to register a layer class, and a
% model file path relative to the location of this registration file

%   Copyright 2021 The MathWorks, Inc.

customLayerList = { ...
    dlhdl.CustomLayer('Name', 'Addition',       'Layer', additionLayer(2),       'Model', 'model/customLayers/dnnfpgaAdditionLayerModel.slx'), ...
    dlhdl.CustomLayer('Name', 'Multiplication', 'Layer', multiplicationLayer(2), 'Model', 'model/customLayers/dnnfpgaMultiplicationLayerModel.slx'), ...
    };

end

To register the custom signum layer for reuse, create this dlhdl_customLayer_registration.m
file and place it on the MATLAB path.
function customLayerList = dlhdl_customLayer_registration
% Custom layer registration file
% 1. Any registration file with this name on MATLAB path will be picked up.
% 2. Registration file returns a cell array of dlhdl.CustomLayer
% object which are used to register custom layer information for Deep 
% Learning HDL Toolbox workflow
% 3. Use dlhdl.CustomLayer object to register a layer class, and a
% model file path relative to the location of this registration file

%   Copyright 2021 The MathWorks, Inc.

customLayerList = { ...
    dlhdl.CustomLayer('Name','Signum','Layer',SignumLayer('Signum'),'Model','C:\Users\skapali\dnnfpgaSignumLayerModel.slx'), ...
   };

end

Create a dlhdl.ProcessorConfig object. The custom signum layer now appears in the default
processor configuration object under the custom processing module.

hPC = dlhdl.ProcessorConfig

hPC = 

                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                      Signum: 'on'
                             InputMemorySize: 40
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                            OutputMemorySize: 40

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: '

For an example of how to create, register, validate, and deploy a network with a custom log layer,
see “Register, Validate, and Deploy Custom Natural Logarithm Layer Network to FPGA” on page 8-
35 .

See Also
dlhdl.ProcessorConfig | registerCustomLayer | openCustomLayerModel |
verifyCustomLayerModel
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Register, Validate, and Deploy Custom Natural Logarithm Layer
Network to FPGA

This example shows how to register, validate, and deploy a custom natural logarithm (log) layer
network by using Deep Learning HDL Toolbox™. To deploy the network with the custom natural
logarithm (log) layer:

• Register the custom natural logarithm log) layer by using the registerCustomLayer method.
• Validate the custom natural logarithm (log) layer by generating a custom layer verification model.
• Generate a custom bitstream.

To retrieve the prediction results from the deployed custom layer network, use MATLAB®.

Create a Deep Learning Processor Configuration

To generate a custom processor configuration, use the dlhdl.ProcessorConfig object. The
generated deep learning processor configuration object has a custom module that contains the
preconfigured custom layers. Save the deep learning processor configuration to a variable hPC.

hPC = dlhdl.ProcessorConfig

Register Custom Layer and Model

To register an instance of the custom layer and custom layer Simulink® model use the
registerCustomLayer method. Deep Learning HDL Toolbox™ uses the Simulink® model to
generate a verification model for the custom layer.

hLogLayer = LogLayer('customLog')
registerCustomLayer(hPC,Layer = hLogLayer, Model = 'dnnfpgaLogLayerModel.slx')

The custom deep learning processor configuration has a Log layer under the custom processing
module. The custom natural logarithm (log) layer is enabled by default for the bitstream generation.

Generate Verification Model for Custom Layer

Generate a verification model for your custom layer by using the openCustomLayerModel method.
Generate a test network and a test image for your custom layer network by specifying blank
arguments for the Network and InputImages arguments of the openCustomLayerModel method.
The size of the test image matches the input layer size of the created test network.

openCustomLayerModel(hPC)

The openCustomLayerModel method generates a verification model file called
dnnfpgaCustomLayerVerificationModel.slx for your custom layer.

Simulate and Validate Custom Layer Model

Before you verify your custom layer model by using the verifyCustomLayerModel method, open
the dnnfpgaCustomLayerVerificationModel.slx verification model. The
verifyCustomLayerModel verifies the functionality of the custom layer and prediction accuracy of
the network which has the custom layer.

verifyCustomLayerModel(hPC)
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Generate Custom Bitstream

Generate a custom bitstream that has the name myCustomLayer.bit by using the
dlhdl.buildProcessor function. Save the generated bitstream to the myCustomLayer_prj
folder.

dlhdl.buildProcessor(hPC,ProjectFolder = 'myCustomLayer_prj',ProcessorName ='myCustomLayer');

See Also
dlhdl.Workflow | dlhdl.ProcessorConfig | registerCustomLayer |
openCustomLayerModel | verifyCustomLayerModel | dlhdl.buildProcessor

More About
• “Create Deep Learning Processor Configuration for Custom Layers” on page 8-26
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Custom Processor Code Generation
Workflow

• “Generate Custom Bitstream” on page 9-2
• “Generate Custom Processor IP” on page 9-3
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Generate Custom Bitstream
To deploy a deep learning network to your custom target device, generate a custom bitstream by
using the dlhdl.ProcessorConfig object.

1 Create a dlhdl.ProcessorConfig object.

hPC = dlhdl.ProcessorConfig;
2 Set up the tool path to your design tool. For example, to set up the path to the Vivado design tool,

enter:
hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath','C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

3 Generate the custom bitstream.

dlhdl.buildProcessor(hPC);
4 Locate the bitstream file and associated MAT file at cwd\dlhdl_prj\, where cwd is your

current working folder. The name of the bitstream file is dlprocessor.bit . The name of the
MAT file is dlprocessor.mat.

To use the generated bitstream for the supported Xilinx boards, copy the dlprocessor.bit and
dlprocessor.mat files to the present working folder.

To use the generated bitstream for the supported Intel boards, copy the
dlprocessor.core.rbf, dlprocessor.mat, dlprocessor.periph.rbf, and
dlprocessor.sof files to the same present working folder.

5 Deploy the custom bitstream and deep learning network to your target device.
hTarget = dlhdl.Target('Xilinx');
net = resnet18;
hW = dlhdl.Workflow('Network',net,'Bitstream','dlprocessor.bit','Target',hTarget);
% If your custom bitstream files are in a different folder, use:
% hW = dlhdl.Workflow('Network',snet,'Bitstream',...
% 'C:\yourfolder\dlprocessor.bit','Target',hTarget);
hW.compile;
hW.deploy;

See Also
dlhdl.ProcessorConfig | dlhdl.buildProcessor | dlhdl.Workflow
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Generate Custom Processor IP
Generate a custom deep learning processor IP core from a custom deep learning processor
configuration. The generated deep learning processor IP core is shared and reusable. Integrate the
generated deep learning processor IP core into your custom reference design. The
dlhdl.buildProcessor API builds the dlhdl.ProcessorConfig object to generate a custom
processor IP and related code that you can use in your custom reference designs.

1 Create a dlhdl.ProcessorConfig object.

hPC = dlhdl.ProcessorConfig;
2 Set up the tool path to your design tool. For example, to set up the path to the Vivado design tool,

enter:
hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath','C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

3 Generate the custom processor IP.

dlhdl.buildProcessor(hPC);

See Also
dlhdl.ProcessorConfig | dlhdl.buildProcessor

More About
• “Deep Learning Processor IP Core” on page 12-5
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Get Started with Deep Learning FPGA Deployment on Intel
Arria 10 SoC

This example shows how to create, compile, and deploy a dlhdl.Workflow object that has a
handwritten character detection series network object by using the Deep Learning HDL Toolbox™
Support Package for Intel FPGA and SoC. Use MATLAB® to retrieve the prediction results from the
target device.

Prerequisites

• Intel Arria™ 10 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Intel FPGA and SoC
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox™

Load the Pretrained SeriesNetwork

To load the pretrained series network, that has been trained on the Modified National Institute
Standards of Technology (MNIST) database, enter:

snet = getDigitsNetwork;

To view the layers of the pretrained series network, enter:

analyzeNetwork(snet)

Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install
Intel™ Quartus™ Prime Standard Edition 20.1. Set up the path to your installed Intel Quartus Prime
executable if it is not already set up. For example, to set the toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Altera Quartus II','ToolPath', 'C:\altera\20.1\quartus\bin64');

hTarget = dlhdl.Target('Intel')

hTarget = 
  Target with properties:

       Vendor: 'Intel'
    Interface: JTAG

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained MNIST neural network, snet, as the network. Make
sure that the bitstream name matches the data type and the FPGA board that you are targeting. In
this example, the target FPGA board is the Intel Arria 10 SOC board and the bitstream uses a single
data type.

hW = dlhdl.Workflow('network', snet, 'Bitstream', 'arria10soc_single','Target',hTarget)
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hW = 
  Workflow with properties:

            Network: [1×1 SeriesNetwork]
          Bitstream: 'arria10soc_single'
    ProcessorConfig: []
             Target: [1×1 dlhdl.Target]

Compile the MNIST Series Network

To compile the MNIST series network, run the compile function of the dlhdl.Workflow object.

dn = hW.compile;

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00800000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02400000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02800000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02c00000"     "4.0 MB"        
    "EndOffset"                 "0x03000000"     "Total: 48.0 MB"

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Intel Arria 10 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 28-Jun-2020 13:45:47

Run Prediction for Example Image

To load the example image, execute the predict function of the dlhdl.Workflow object, and then
display the FPGA result, enter:

inputImg = imread('five_28x28.pgm');
imshow(inputImg);

10 Featured Examples

10-4



Run prediction with the profile 'on' to see the latency and throughput results.

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      49243                  0.00033                       1              49807           3011.6
    conv_module              25983                  0.00017 
        conv_1                6813                  0.00005 
        maxpool_1             4705                  0.00003 
        conv_2                5205                  0.00003 
        maxpool_2             3839                  0.00003 
        conv_3                5481                  0.00004 
    fc_module                23260                  0.00016 
        fc                   23260                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

[val, idx] = max(prediction);
fprintf('The prediction result is %d\n', idx-1);

The prediction result is 5

See Also

More About
• “Create Simple Deep Learning Network for Classification”

 Get Started with Deep Learning FPGA Deployment on Intel Arria 10 SoC

10-5



Get Started with Deep Learning FPGA Deployment on Xilinx
ZCU102 SoC

This example shows how to create, compile, and deploy a dlhdl.Workflow object that has a
handwritten character detection series network as the network object by using the Deep Learning
HDL Toolbox™ Support Package for Xilinx FPGA and SoC. Use MATLAB® to retrieve the prediction
results from the target device.

Prerequisites

• Xilinx ZCU102 SoC development kit.
• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™

Load the Pretrained Series Network

To load the pretrained series network, that has been trained on the Modified National Institute
Standards of Technology (MNIST) database, enter:

snet = getDigitsNetwork;

To view the layers of the pretrained series network, enter:

analyzeNetwork(snet)

Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet.

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet')

hTarget = 
  Target with properties:

       Vendor: 'Xilinx'
    Interface: Ethernet
    IPAddress: '192.168.1.101'
     Username: 'root'
         Port: 22

Create WorkFlow Object

Create an object of the dlhdl.Workflow class. Specify the network and the bitstream name during
the object creation. Specify saved pretrained MNIST neural network, snet, as the network. Make sure
that the bitstream name matches the data type and the FPGA board that you are targeting. In this
example, the target FPGA board is the Xilinx ZCU102 SOC board and the bitstream uses a single data
type.

hW = dlhdl.Workflow('network', snet, 'Bitstream', 'zcu102_single','Target',hTarget)
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hW = 
  Workflow with properties:

            Network: [1×1 SeriesNetwork]
          Bitstream: 'zcu102_single'
    ProcessorConfig: []
             Target: [1×1 dlhdl.Target]

Compile the MNIST Series Network

To compile the MNIST series network, run the compile function of the dlhdl.Workflow object.

dn = hW.compile;

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single ...
### The network includes the following layers:

     1   'imageinput'    Image Input             28×28×1 images with 'zerocenter' normalization                (SW Layer)
     2   'conv_1'        Convolution             8 3×3×1 convolutions with stride [1  1] and padding 'same'    (HW Layer)
     3   'batchnorm_1'   Batch Normalization     Batch normalization with 8 channels                           (HW Layer)
     4   'relu_1'        ReLU                    ReLU                                                          (HW Layer)
     5   'maxpool_1'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     6   'conv_2'        Convolution             16 3×3×8 convolutions with stride [1  1] and padding 'same'   (HW Layer)
     7   'batchnorm_2'   Batch Normalization     Batch normalization with 16 channels                          (HW Layer)
     8   'relu_2'        ReLU                    ReLU                                                          (HW Layer)
     9   'maxpool_2'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    10   'conv_3'        Convolution             32 3×3×16 convolutions with stride [1  1] and padding 'same'  (HW Layer)
    11   'batchnorm_3'   Batch Normalization     Batch normalization with 32 channels                          (HW Layer)
    12   'relu_3'        ReLU                    ReLU                                                          (HW Layer)
    13   'fc'            Fully Connected         10 fully connected layer                                      (HW Layer)
    14   'softmax'       Softmax                 softmax                                                       (SW Layer)
    15   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes                   (SW Layer)

3 Memory Regions created.

Skipping: imageinput
Compiling leg: conv_1>>relu_3 ...
### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: (Layer  1) The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: (Layer 10) The layer 'output' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
Compiling leg: conv_1>>relu_3 ... complete.
Compiling leg: fc ...
### Notice: (Layer  1) The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: (Layer  3) The layer 'output' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
Compiling leg: fc ... complete.
Skipping: softmax
Skipping: classoutput
Creating Schedule...
.......
Creating Schedule...complete.
Creating Status Table...
......
Creating Status Table...complete.
Emitting Schedule...
......
Emitting Schedule...complete.
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Emitting Status Table...
........
Emitting Status Table...complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00c00000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02800000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02c00000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x03000000"     "4.0 MB"        
    "EndOffset"                 "0x03400000"     "Total: 52.0 MB"

### Network compilation complete.

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.

System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 30-Dec-2020 15:13:03
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 30-Dec-2020 15:13:03

Run Prediction for Example Image

To load the example image, execute the predict function of the dlhdl.Workflow object, and then
display the FPGA result, enter:

inputImg = imread('five_28x28.pgm');
imshow(inputImg);
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Run prediction with the profile 'on' to see the latency and throughput results.

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      98117                  0.00045                       1              98117           2242.2
        conv_1                6607                  0.00003 
        maxpool_1             4716                  0.00002 
        conv_2                4637                  0.00002 
        maxpool_2             2977                  0.00001 
        conv_3                6752                  0.00003 
        fc                   72428                  0.00033 
 * The clock frequency of the DL processor is: 220MHz

[val, idx] = max(prediction);
fprintf('The prediction result is %d\n', idx-1);

The prediction result is 5

See Also

More About
• “Create Simple Deep Learning Network for Classification”
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Get Started with Deep Learning FPGA Deployment on Xilinx
ZC706 SoC

This example shows how to create, compile, and deploy a dlhdl.Workflow object that has a
handwritten character detection series network as the network object using the Deep Learning HDL
Toolbox™ Support Package for Xilinx® FPGA and SoC. Use MATLAB® to retrieve the prediction
results from the target device.

Prerequisites

• Xilinx® Zynq® ZC706 Evaluation Kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx® FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load Pretrained Series Network

Load the pretrained series network trained on the Modified National Institute of Standards and
Technology (MNIST) database.

snet = getDigitsNetwork;

View the layers of the pretrained series network, by using the analyzeNetwork function.

analyzeNetwork(snet)

Create Target Object

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install
Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

hTarget = dlhdl.Target('Xilinx');

Create WorkFlow Object

Create an object of the dlhdl.Workflow class. Specify the network and the bitstream name. Specify
the saved pretrained MNIST neural network, snet, as the network. Make sure that the bitstream
name matches the data type and the FPGA board that you are targeting. In this example the target
FPGA board is the Xilinx Zynq ZC706 board. The bitstream uses a single data type.

hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_single','Target',hTarget);

Compile MNIST Series Network

Run the compile function of the dlhdl.Workflow object, to compile the MNIST series network.

dn = hW.compile

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
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    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00800000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02400000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02800000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02c00000"     "4.0 MB"        
    "EndOffset"                 "0x03000000"     "Total: 48.0 MB"

dn = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZC706 hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device and displays progress messages and the time it takes
to deploy the network.

hW.deploy

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 12-Jun-2020 14:54:22

Load Example Image

Load the example image.

inputImg = imread('five_28x28.pgm');
imshow(inputImg);

Run Prediction

Execute the predict function of the dlhdl.Workflow object and display the prediction result and
network performance.

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.
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              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      80141                  0.00160                       1              80182            623.6
    conv_module              47601                  0.00095 
        conv_1               10047                  0.00020 
        maxpool_1             6999                  0.00014 
        conv_2               11367                  0.00023 
        maxpool_2             5465                  0.00011 
        conv_3               13783                  0.00028 
    fc_module                32540                  0.00065 
        fc                   32540                  0.00065 
 * The clock frequency of the DL processor is: 50MHz

[val, idx] = max(prediction);
fprintf('The prediction result is %d\n', idx-1);

The prediction result is 5
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Logo Recognition Network

This example shows how to create, compile, and deploy a dlhdl.Workflow object that has Logo
Recognition Network as the network object using the Deep Learning HDL Toolbox™ Support Package
for Xilinx FPGA and SoC. Use MATLAB® to retrieve the prediction results from the target device.

The Logo Recognition Network

Logos assist users in brand identification and recognition. Many companies incorporate their logos in
advertising, documentation materials, and promotions. The logo recognition network (logonet) was
developed in MATLAB® and can recognize 32 logos under various lighting conditions and camera
motions. Because this network focuses only on recognition, you can use it in applications where
localization is not required.

Prerequisites

• Xilinx ZCU102 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained Series Network

To load the pretrained series network logonet, enter:

snet = getLogoNetwork;

To view the layers of the pretrained series network, enter:

analyzeNetwork(snet)
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Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install
Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

To create the target object, enter:

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Create WorkFlow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained logonet neural network, snet, as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream
uses a single data type.

hW = dlhdl.Workflow('network', snet, 'Bitstream', 'zcu102_single','Target',hTarget);
% If running on Xilinx ZC706 board, instead of the above command, 
% uncomment the command below.
%
% hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_single','Target',hTarget);

Compile the Logo Recognition Network

To compile the logo recognition network, run the compile function of the dlhdl.Workflow object.
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dn = hW.compile

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "4.0 MB"         
    "SystemBufferOffset"        "0x01c00000"     "60.0 MB"        
    "InstructionDataOffset"     "0x05800000"     "12.0 MB"        
    "ConvWeightDataOffset"      "0x06400000"     "32.0 MB"        
    "FCWeightDataOffset"        "0x08400000"     "44.0 MB"        
    "EndOffset"                 "0x0b000000"     "Total: 176.0 MB"

dn = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

 hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to FC Processor.
### 33% finished, current time is 28-Jun-2020 12:40:14.
### 67% finished, current time is 28-Jun-2020 12:40:14.
### FC Weights loaded. Current time is 28-Jun-2020 12:40:14

Load the Example Image

Load the example image.

image = imread('heineken.png');
inputImg = imresize(image, [227, 227]);
imshow(inputImg);
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Run the Prediction

Execute the predict function on the dlhdl.Workflow object and display the result:

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   38865102                  0.17666                       1           38865144              5.7
    conv_module           34299592                  0.15591 
        conv_1             6955899                  0.03162 
        maxpool_1          3306384                  0.01503 
        conv_2            10396300                  0.04726 
        maxpool_2          1207215                  0.00549 
        conv_3             9269094                  0.04213 
        maxpool_3          1367650                  0.00622 
        conv_4             1774679                  0.00807 
        maxpool_4            22464                  0.00010 
    fc_module              4565510                  0.02075 
        fc_1               2748478                  0.01249 
        fc_2               1758315                  0.00799 
        fc_3                 58715                  0.00027 
 * The clock frequency of the DL processor is: 220MHz

[val, idx] = max(prediction);
snet.Layers(end).ClassNames{idx}

ans = 
'heineken'
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Deploy Transfer Learning Network for Lane Detection

This example shows how to create, compile, and deploy a dlhdl.Workflow object that has a lane
detection convolutional neural network as the network object, by using the Deep learning HDL
Toolbox™. The network can detect and output lane marker boundaries as the network object using
the Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC. Use MATLAB® to
retrieve the prediction results from the target device.

Prerequisites

• Xilinx ZCU102 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained SeriesNetwork

To load the pretrained series network lanenet, enter:

snet = getLaneDetectionNetwork;

Normalize the Input Layer

To normalize the input layer by modifying its type, enter:

inputlayer = imageInputLayer(snet.Layers(1).InputSize, 'Normalization','none');
snet = SeriesNetwork([inputlayer; snet.Layers(2:end)]);

To view the layers of the pretrained series network, enter:

analyzeNetwork(snet)
% The saved network contains 23 layers including input, convolution, ReLU, cross channel normalization,
% max pool, fully connected, and the regression output layers.
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Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG AND Ethernet.

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Generate Bitstream to Run Network

The lane detection network consists of multiple Cross Channel Normalization layers. To support this
layer on hardware, the 'LRNBlockGeneration' property of the conv module needs to be turned on in
the bitstream used for FPGA inference. The shipping zcu102_single bitstream does not have this
property turned on. A new bitstream can be generated using the following lines of code. The
generated bitstream can be used along with a dlhdl.Workflow object for inference.

When creating a dlhdl.ProcessorConfig object for an existing shipping bitstream, make sure that the
bitstream name matches the data type and the FPGA board that you are targeting. In this example
the target FPGA board is the Xilinx ZCU102 SoC board and the date type is single. Update the
processor configuration with 'LRNBlockGeneration' turned on and 'SegmentationBlockGeneration'
turned off. Turn the latter off to fit the Deep Learning IP on the FPGA and avoid overutilization of
resources.

% hPC = dlhdl.ProcessorConfig('Bitstream', 'zcu102_single');
% hPC.setModuleProperty('conv', 'LRNBlockGeneration', 'on');
% hPC.setModuleProperty('conv', 'SegmentationBlockGeneration', 'off');
% dlhdl.buildProcessor(hPC)
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If targeting the Xilinx ZC706 board, replace 'zcu102_single' with 'zc706_single' in the first command
above.

To learn how to use the generated bitstream file, see “Generate Custom Bitstream” on page 9-2.

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the class, specify the network and
the bitstream name. Make sure to use the generated bitstream which enables processing of Cross
Channel Normalization layers on the FPGA. Specify the saved pretrained lanenet neural network,
snet, as the network.

hW = dlhdl.Workflow('network', snet, 'Bitstream', 'dlprocessor.bit','Target',hTarget);

Compile the Lanenet series Network

To compile the lanenet series network, run the compile function of the dlhdl.Workflow object.

dn = hW.compile;

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "4.0 MB"         
    "SystemBufferOffset"        "0x01c00000"     "28.0 MB"        
    "InstructionDataOffset"     "0x03800000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x03c00000"     "16.0 MB"        
    "FCWeightDataOffset"        "0x04c00000"     "148.0 MB"       
    "EndOffset"                 "0x0e000000"     "Total: 224.0 MB"

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

 hW.deploy;

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to FC Processor.
### 13% finished, current time is 28-Jun-2020 12:36:09.
### 25% finished, current time is 28-Jun-2020 12:36:10.
### 38% finished, current time is 28-Jun-2020 12:36:11.
### 50% finished, current time is 28-Jun-2020 12:36:12.
### 63% finished, current time is 28-Jun-2020 12:36:13.
### 75% finished, current time is 28-Jun-2020 12:36:14.
### 88% finished, current time is 28-Jun-2020 12:36:14.
### FC Weights loaded. Current time is 28-Jun-2020 12:36:15

Run Prediction for Example Video

Run the demoOnVideo function for the dlhdl.Workflow class object. This function loads the
example video, executes the predict function of the dlhdl.Workflow object, and then plots the
result.

 Deploy Transfer Learning Network for Lane Detection

10-19



demoOnVideo(hW,1);

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   24904175                  0.11320                       1           24904217              8.8
    conv_module            8967009                  0.04076 
        conv1              1396633                  0.00635 
        norm1               623003                  0.00283 
        pool1               226855                  0.00103 
        conv2              3410044                  0.01550 
        norm2               378531                  0.00172 
        pool2               233635                  0.00106 
        conv3              1139419                  0.00518 
        conv4               892918                  0.00406 
        conv5               615897                  0.00280 
        pool5                50189                  0.00023 
    fc_module             15937166                  0.07244 
        fc6               15819257                  0.07191 
        fcLane1             117125                  0.00053 
        fcLane2                782                  0.00000 
 * The clock frequency of the DL processor is: 220MHz
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Image Category Classification by Using Deep Learning

This example shows you how to create, compile, and deploy a dlhdl.Workflow object with
ResNet-18 as the network object by using the Deep Learning HDL Toolbox™ Support Package for
Xilinx FPGA and SoC. Use MATLAB® to retrieve the prediction results from the target device.
ResNet-18 is a pretrained convolutional neural network that has been trained on over a million
images and can classify images into 1000 object categories (such as keyboard, coffee, mug,
pencil,and many animals). You can also use VGG-19 and DarkNet-19 as the network objects.

Prerequisites

• Xilinx ZCU102 SoC Development Kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™ Model for ResNet-18 Network
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained Network

To load the pretrained Directed Acyclic Graph (DAG) network resnet18, enter:

net = resnet18;

To load the pretrained series network vgg19, enter:

% net = vgg19;

To load the pretrained series network darknet19, enter:

% net = darknet19;

The pretrained ResNet-18 network contains 71 layers including the input, convolution, batch
normalization, ReLU, max pooling, addition, global average pooling, fully connected, and the softmax
layers. To view the layers of the pretrained ResNet-18 network, enter:

analyzeNetwork(net)
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Create Target Object

Use the dlhdl.Target class to create a target object with a custom name for your target device and
an interface to connect your target device to the host computer. Interface options are JTAG and
Ethernet. To use JTAG,Install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath,
enter:

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

hTarget = dlhdl.Target('Xilinx', 'Interface', 'Ethernet');

Create WorkFlow Object

Use the dlhdl.Workflow class to create an object. When you create the object, specify the network
and the bitstream name. Specify the saved pretrained ResNet-18 neural network as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Xilinx ZCU102 SoC board. The bitstream
uses a single data type.

hW = dlhdl.Workflow('Network', net, 'Bitstream', 'zcu102_single', 'Target', hTarget);

Compile the ResNet-18 DAG network

To compile the ResNet-18 DAG network, run the compile method of the dlhdl.Workflow object.
You can optionally specify the maximum number of input frames. You can also optionally specify the
input image normalization to happen in software.

dn = compile(hW, 'InputFrameNumberLimit', 15, 'HardwareNormalization', 'off')
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### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### The network includes the following layers:
     1   'data'                              Image Input                  224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                             Convolution                  64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'bn_conv1'                          Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     4   'conv1_relu'                        ReLU                         ReLU                                                                  (HW Layer)
     5   'pool1'                             Max Pooling                  3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     6   'res2a_branch2a'                    Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     7   'bn2a_branch2a'                     Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     8   'res2a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
     9   'res2a_branch2b'                    Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    10   'bn2a_branch2b'                     Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    11   'res2a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    12   'res2a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    13   'res2b_branch2a'                    Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    14   'bn2b_branch2a'                     Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    15   'res2b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    16   'res2b_branch2b'                    Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    17   'bn2b_branch2b'                     Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    18   'res2b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    19   'res2b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    20   'res3a_branch2a'                    Convolution                  128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    21   'bn3a_branch2a'                     Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    22   'res3a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    23   'res3a_branch2b'                    Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'bn3a_branch2b'                     Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    25   'res3a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    26   'res3a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    27   'res3a_branch1'                     Convolution                  128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    28   'bn3a_branch1'                      Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    29   'res3b_branch2a'                    Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    30   'bn3b_branch2a'                     Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    31   'res3b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    32   'res3b_branch2b'                    Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'bn3b_branch2b'                     Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    34   'res3b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    35   'res3b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    36   'res4a_branch2a'                    Convolution                  256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    37   'bn4a_branch2a'                     Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    38   'res4a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    39   'res4a_branch2b'                    Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'bn4a_branch2b'                     Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    41   'res4a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res4a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    43   'res4a_branch1'                     Convolution                  256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    44   'bn4a_branch1'                      Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    45   'res4b_branch2a'                    Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'bn4b_branch2a'                     Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    47   'res4b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    48   'res4b_branch2b'                    Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    49   'bn4b_branch2b'                     Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    50   'res4b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    51   'res4b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    52   'res5a_branch2a'                    Convolution                  512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    53   'bn5a_branch2a'                     Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    54   'res5a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    55   'res5a_branch2b'                    Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
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    56   'bn5a_branch2b'                     Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    57   'res5a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    58   'res5a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    59   'res5a_branch1'                     Convolution                  512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    60   'bn5a_branch1'                      Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    61   'res5b_branch2a'                    Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    62   'bn5b_branch2a'                     Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    63   'res5b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    64   'res5b_branch2b'                    Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    65   'bn5b_branch2b'                     Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    66   'res5b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    67   'res5b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    68   'pool5'                             2-D Global Average Pooling   2-D global average pooling                                            (HW Layer)
    69   'fc1000'                            Fully Connected              1000 fully connected layer                                            (HW Layer)
    70   'prob'                              Softmax                      softmax                                                               (HW Layer)
    71   'ClassificationLayer_predictions'   Classification Output        crossentropyex with 'tench' and 999 other classes                     (SW Layer)
                                                                                                                                              
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: conv1>>pool1 ...
### Compiling layer group: conv1>>pool1 ... complete.
### Compiling layer group: res2a_branch2a>>res2a_branch2b ...
### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete.
### Compiling layer group: res2b_branch2a>>res2b_branch2b ...
### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete.
### Compiling layer group: res3a_branch1 ...
### Compiling layer group: res3a_branch1 ... complete.
### Compiling layer group: res3a_branch2a>>res3a_branch2b ...
### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete.
### Compiling layer group: res3b_branch2a>>res3b_branch2b ...
### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete.
### Compiling layer group: res4a_branch1 ...
### Compiling layer group: res4a_branch1 ... complete.
### Compiling layer group: res4a_branch2a>>res4a_branch2b ...
### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete.
### Compiling layer group: res4b_branch2a>>res4b_branch2b ...
### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete.
### Compiling layer group: res5a_branch1 ...
### Compiling layer group: res5a_branch1 ... complete.
### Compiling layer group: res5a_branch2a>>res5a_branch2b ...
### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete.
### Compiling layer group: res5b_branch2a>>res5b_branch2b ...
### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete.
### Compiling layer group: pool5 ...
### Compiling layer group: pool5 ... complete.
### Compiling layer group: fc1000 ...
### Compiling layer group: fc1000 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "12.0 MB"        
    "OutputResultOffset"        "0x00c00000"     "4.0 MB"         
    "SchedulerDataOffset"       "0x01000000"     "4.0 MB"         
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    "SystemBufferOffset"        "0x01400000"     "28.0 MB"        
    "InstructionDataOffset"     "0x03000000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x03400000"     "52.0 MB"        
    "FCWeightDataOffset"        "0x06800000"     "4.0 MB"         
    "EndOffset"                 "0x06c00000"     "Total: 108.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

deploy(hW)

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.

System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 10-Dec-2021 16:01:37
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 10-Dec-2021 16:01:37

Load Image for Prediction

Load the example image.

imgFile = 'espressomaker.jpg';
inputImg = imresize(imread(imgFile), [224,224]);
imshow(inputImg)
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Run Prediction for One Image

Execute the predict method on the dlhdl.Workflow object and then show the label in the MATLAB
command window.

[prediction, speed] = predict(hW,single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results
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                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   24100982                  0.10955                       1           24103448              9.1
    conv1                  2225590                  0.01012 
    pool1                   577207                  0.00262 
    res2a_branch2a          973263                  0.00442 
    res2a_branch2b          973083                  0.00442 
    res2a                   307582                  0.00140 
    res2b_branch2a          973221                  0.00442 
    res2b_branch2b          973548                  0.00443 
    res2b                   307602                  0.00140 
    res3a_branch1           541072                  0.00246 
    res3a_branch2a          749668                  0.00341 
    res3a_branch2b          908194                  0.00413 
    res3a                   153885                  0.00070 
    res3b_branch2a          908013                  0.00413 
    res3b_branch2b          907705                  0.00413 
    res3b                   153935                  0.00070 
    res4a_branch1           491540                  0.00223 
    res4a_branch2a          491680                  0.00223 
    res4a_branch2b          889776                  0.00404 
    res4a                    77044                  0.00035 
    res4b_branch2a          889897                  0.00404 
    res4b_branch2b          889873                  0.00404 
    res4b                    77053                  0.00035 
    res5a_branch1          1057762                  0.00481 
    res5a_branch2a         1057907                  0.00481 
    res5a_branch2b         2058997                  0.00936 
    res5a                    38602                  0.00018 
    res5b_branch2a         2058860                  0.00936 
    res5b_branch2b         2059549                  0.00936 
    res5b                    38704                  0.00018 
    pool5                    73721                  0.00034 
    fc1000                  216262                  0.00098 
 * The clock frequency of the DL processor is: 220MHz

[val, idx] = max(prediction);
net.Layers(end).ClassNames{idx}

ans = 
'Polaroid camera'

Run Prediction for Multiple Images

Load multiple images and retrieve their prediction reults by using the mulltiple frame support
feature. For more information, see “Multiple Frame Support” on page 5-7.

The demoOnImage function loads multiple images and retrieves their prediction results. The
annotateresults function displays the image prediction result on top of the images which are
assembled into a 3-by-5 array.

imshow(inputImg)
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demoOnImage; 

### Finished writing input activations.
### Running in multi-frame mode with 15 inputs.
FPGA PREDICTION: binder 
FPGA PREDICTION: file 
FPGA PREDICTION: barber chair 
FPGA PREDICTION: mixing bowl 
FPGA PREDICTION: washbasin 
FPGA PREDICTION: desk 
FPGA PREDICTION: envelope 
FPGA PREDICTION: Polaroid camera 
FPGA PREDICTION: typewriter keyboard 
FPGA PREDICTION: monitor 
FPGA PREDICTION: sunglass 
FPGA PREDICTION: ballpoint 
FPGA PREDICTION: can opener 
FPGA PREDICTION: analog clock 
FPGA PREDICTION: ashcan 

10 Featured Examples

10-28



 Image Category Classification by Using Deep Learning

10-29



Defect Detection

This example shows how to deploy a custom trained series network to detect defects in objects such
as hexagon nuts. The custom networks were trained by using transfer learning. Transfer learning is
commonly used in deep learning applications. You can take a pretrained network and use it as a
starting point to learn a new task. Fine-tuning a network with transfer learning is usually much faster
and easier than training a network with randomly initialized weights from scratch. You can quickly
transfer learned features to a new task using a smaller number of training signals. This example uses
two trained series networks, trainedDefNet.mat and trainedBlemDetNet.mat.

Prerequisites

• Xilinx ZCU102 SoC development kit
• Deep Learning HDL Toolbox™Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load Pretrained Networks

Load the custom pretrained series network trainedDefNet.

if ~isfile('trainedDefNet.mat')
        url = 'https://www.mathworks.com/supportfiles/dlhdl/trainedDefNet.mat';
        websave('trainedDefNet.mat',url);
    end
    net1 = load('trainedDefNet.mat');
   snet_defnet = net1.custom_alexnet

snet_defnet = 
  SeriesNetwork with properties:

         Layers: [25×1 nnet.cnn.layer.Layer]
     InputNames: {'data'}
    OutputNames: {'output'}

Analyze the network. analyzeNetwork displays an interactive plot of the network architecture and a
table containing information about the network layers.

    analyzeNetwork(snet_defnet)  

Load the network snet_blemdetnet.

    
   
if ~isfile('trainedBlemDetNet.mat')
        url = 'https://www.mathworks.com/supportfiles/dlhdl/trainedBlemDetNet.mat';
        websave('trainedBlemDetNet.mat',url);
    end
    net2 = load('trainedBlemDetNet.mat');
    snet_blemdetnet = net2.convnet

snet_blemdetnet = 
  SeriesNetwork with properties:
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         Layers: [12×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Analyze the network. analyzeNetwork displays an interactive plot of the network architecture and a
table containing information about the network layers.

    analyzeNetwork(snet_blemdetnet)

Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use the JTAG
connection, install the Xilinx™ Vivado™ Design Suite 2020.2.

Set the Xilinx Vivado toolpath.

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

hT = dlhdl.Target('Xilinx','Interface','Ethernet')

hT = 
  Target with properties:

       Vendor: 'Xilinx'
    Interface: Ethernet
    IPAddress: '192.168.1.101'
     Username: 'root'
         Port: 22

Generate Bitstream to Run Network

The defect detection network consists of multiple Cross Channel Normalization layers. To support this
layer on hardware, the 'LRNBlockGeneration' property of the conv module needs to be turned on in
the bitstream used for FPGA inference. The shipping zcu102_single bitstream does not have this
property turned on. A new bitstream can be generated using the following lines of code. The
generated bitstream can be used along with a dlhdl.Workflow object for inference.

When creating a dlhdl.ProcessorConfig object for an existing shipping bitstream, make sure that the
bitstream name matches the data type and the FPGA board that you are targeting. In this example
the target FPGA board is the Xilinx ZCU102 SoC board and the date type is single. Update the
processor configuration with 'LRNBlockGeneration' turned on and 'SegmentationBlockGeneration'
turned off. Turn the latter off to fit the Deep Learning IP on the FPGA and avoid overutilization of
resources.

hPC = dlhdl.ProcessorConfig('Bitstream', 'zcu102_single');
hPC.setModuleProperty('conv', 'LRNBlockGeneration', 'on');
hPC.setModuleProperty('conv', 'SegmentationBlockGeneration', 'off');
dlhdl.buildProcessor(hPC)

To learn how to use the generated bitstream file, see “Generate Custom Bitstream” on page 9-2.

Create Workflow Object for trainedDefNet Network

Create an object of the dlhdl.Workflow class. When you create the class, specify the network and
the bitstream name. Make sure to use the generated bitstream which enables processing of Cross
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Channel Normalization layers on the FPGA. Specify the saved pretrained neural network,
snet_defnet, as the network.

hW = dlhdl.Workflow('Network',snet_defnet,'Bitstream','dlprocessor.bit','Target',hT);

Compile trainedDefNet Series Network

Run the compile function of the dlhdl.Workflow object.

hW.compile

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single ...
### The network includes the following layers:

     1   'data'     Image Input                   128×128×1 images with 'zerocenter' normalization                                  (SW Layer)
     2   'conv1'    Convolution                   96 11×11×1 convolutions with stride [4  4] and padding [0  0  0  0]               (HW Layer)
     3   'relu1'    ReLU                          ReLU                                                                              (HW Layer)
     4   'norm1'    Cross Channel Normalization   cross channel normalization with 5 channels per element                           (HW Layer)
     5   'pool1'    Max Pooling                   3×3 max pooling with stride [2  2] and padding [0  0  0  0]                       (HW Layer)
     6   'conv2'    Grouped Convolution           2 groups of 128 5×5×48 convolutions with stride [1  1] and padding [2  2  2  2]   (HW Layer)
     7   'relu2'    ReLU                          ReLU                                                                              (HW Layer)
     8   'norm2'    Cross Channel Normalization   cross channel normalization with 5 channels per element                           (HW Layer)
     9   'pool2'    Max Pooling                   3×3 max pooling with stride [2  2] and padding [0  0  0  0]                       (HW Layer)
    10   'conv3'    Convolution                   384 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]              (HW Layer)
    11   'relu3'    ReLU                          ReLU                                                                              (HW Layer)
    12   'conv4'    Grouped Convolution           2 groups of 192 3×3×192 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    13   'relu4'    ReLU                          ReLU                                                                              (HW Layer)
    14   'conv5'    Grouped Convolution           2 groups of 128 3×3×192 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    15   'relu5'    ReLU                          ReLU                                                                              (HW Layer)
    16   'pool5'    Max Pooling                   3×3 max pooling with stride [2  2] and padding [0  0  0  0]                       (HW Layer)
    17   'fc6'      Fully Connected               4096 fully connected layer                                                        (HW Layer)
    18   'relu6'    ReLU                          ReLU                                                                              (HW Layer)
    19   'drop6'    Dropout                       50% dropout                                                                       (HW Layer)
    20   'fc7'      Fully Connected               4096 fully connected layer                                                        (HW Layer)
    21   'relu7'    ReLU                          ReLU                                                                              (HW Layer)
    22   'drop7'    Dropout                       50% dropout                                                                       (HW Layer)
    23   'fc8'      Fully Connected               2 fully connected layer                                                           (HW Layer)
    24   'prob'     Softmax                       softmax                                                                           (SW Layer)
    25   'output'   Classification Output         crossentropyex with classes 'ng' and 'ok'                                         (SW Layer)

3 Memory Regions created.

Skipping: data
Compiling leg: conv1>>pool5 ...
Compiling leg: conv1>>pool5 ... complete.
Compiling leg: fc6>>fc8 ...
Compiling leg: fc6>>fc8 ... complete.
Skipping: prob
Skipping: output
Creating Schedule...
.......
Creating Schedule...complete.
Creating Status Table...
......
Creating Status Table...complete.
Emitting Schedule...
......
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Emitting Schedule...complete.
Emitting Status Table...
........
Emitting Status Table...complete.

### Allocating external memory buffers:

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "8.0 MB"         
    "OutputResultOffset"        "0x00800000"     "4.0 MB"         
    "SchedulerDataOffset"       "0x00c00000"     "4.0 MB"         
    "SystemBufferOffset"        "0x01000000"     "28.0 MB"        
    "InstructionDataOffset"     "0x02c00000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x03000000"     "12.0 MB"        
    "FCWeightDataOffset"        "0x03c00000"     "84.0 MB"        
    "EndOffset"                 "0x09000000"     "Total: 144.0 MB"

### Network compilation complete.

ans = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device and displays progress messages and the time it takes
to deploy the network.

hW.deploy

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.

System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Dec-2020 16:16:31
### Loading weights to FC Processor.
### 20% finished, current time is 16-Dec-2020 16:16:32.
### 40% finished, current time is 16-Dec-2020 16:16:32.
### 60% finished, current time is 16-Dec-2020 16:16:33.
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### 80% finished, current time is 16-Dec-2020 16:16:34.
### FC Weights loaded. Current time is 16-Dec-2020 16:16:34

Run Prediction for One Image

Load an image from the attached testImages folder and resize the image to match the network
image input layer dimensions. Run the predict function of the dlhdl.Workflow object to retrieve
and display the defect prediction from the FPGA.

wi = uint32(320);
he = uint32(240);
ch = uint32(3);
filename = fullfile(pwd,'ng1.png');
img=imread(filename);
img = imresize(img, [he, wi]);
img = mat2ocv(img);

    % Extract ROI for preprocessing
    [Iori, imgPacked, num, bbox] = myNDNet_Preprocess(img);

    % Row-major to column-major conversion
    imgPacked2 = zeros([128,128,4],'uint8');
    for c = 1:4
        for i = 1:128
            for j = 1:128
                imgPacked2(i,j,c) = imgPacked((i-1)*128 + (j-1) + (c-1)*128*128 + 1);
            end
        end
    end

    % Classify detected nuts by using CNN
    scores = zeros(2,4);
    for i = 1:num
         [scores(:,i), speed] = hW.predict(single(imgPacked2(:,:,i)),'Profile','on');
    end

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   12231156                  0.05560                       1           12231156             18.0
    conv1                   414021                  0.00188 
    norm1                   172325                  0.00078 
    pool1                    56747                  0.00026 
    conv2                   654112                  0.00297 
    norm2                   119403                  0.00054 
    pool2                    43611                  0.00020 
    conv3                   777446                  0.00353 
    conv4                   595551                  0.00271 
    conv5                   404425                  0.00184 
    pool5                    17831                  0.00008 
    fc6                    1759699                  0.00800 
    fc7                    7030188                  0.03196 
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    fc8                     185672                  0.00084 
 * The clock frequency of the DL processor is: 220MHz

    Iori = reshape(Iori, [1, he*wi*ch]);
    bbox = reshape(bbox, [1,16]);
    scores = reshape(scores, [1, 8]);

    % Insert an annotation for postprocessing
    out = myNDNet_Postprocess(Iori, num, bbox, scores, wi, he, ch);

    sz = [he wi ch];
    out = ocv2mat(out,sz);
    imshow(out)

    

Create Workflow Object for trainedBlemDetNet Network

Create an object of the dlhdl.Workflow class. When you create the class, specify the network and
the bitstream name. Make sure to use the generated bitstream which enables processing of Cross
Channel Normalization layers on the FPGA. Specify the saved pretrained neural network,
trainedblemDetNet, as the network.

hW = dlhdl.Workflow('Network',snet_blemdetnet,'Bitstream','dlprocessor.bit','Target',hT)

Compile trainedBlemDetNet Series Network

Run the compile function of the dlhdl.Workflow object.

hW.compile

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single ...
### The network includes the following layers:
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     1   'imageinput'    Image Input                   128×128×1 images with 'zerocenter' normalization                    (SW Layer)
     2   'conv_1'        Convolution                   20 5×5×1 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
     3   'relu_1'        ReLU                          ReLU                                                                (HW Layer)
     4   'maxpool_1'     Max Pooling                   2×2 max pooling with stride [2  2] and padding [0  0  0  0]         (HW Layer)
     5   'crossnorm'     Cross Channel Normalization   cross channel normalization with 5 channels per element             (HW Layer)
     6   'conv_2'        Convolution                   20 5×5×20 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
     7   'relu_2'        ReLU                          ReLU                                                                (HW Layer)
     8   'maxpool_2'     Max Pooling                   2×2 max pooling with stride [2  2] and padding [0  0  0  0]         (HW Layer)
     9   'fc_1'          Fully Connected               512 fully connected layer                                           (HW Layer)
    10   'fc_2'          Fully Connected               2 fully connected layer                                             (HW Layer)
    11   'softmax'       Softmax                       softmax                                                             (SW Layer)
    12   'classoutput'   Classification Output         crossentropyex with classes 'ng' and 'ok'                           (SW Layer)

3 Memory Regions created.

Skipping: imageinput
Compiling leg: conv_1>>maxpool_2 ...
Compiling leg: conv_1>>maxpool_2 ... complete.
Compiling leg: fc_1>>fc_2 ...
Compiling leg: fc_1>>fc_2 ... complete.
Skipping: softmax
Skipping: classoutput
Creating Schedule...
.......
Creating Schedule...complete.
Creating Status Table...
......
Creating Status Table...complete.
Emitting Schedule...
......
Emitting Schedule...complete.
Emitting Status Table...
........
Emitting Status Table...complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "8.0 MB"        
    "OutputResultOffset"        "0x00800000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00c00000"     "4.0 MB"        
    "SystemBufferOffset"        "0x01000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x03000000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x03400000"     "36.0 MB"       
    "EndOffset"                 "0x05800000"     "Total: 88.0 MB"

### Network compilation complete.

ans = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
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Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device and displays progress messages and the time it takes
to deploy the network.

 hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Dec-2020 16:16:47
### Loading weights to FC Processor.
### 50% finished, current time is 16-Dec-2020 16:16:48.
### FC Weights loaded. Current time is 16-Dec-2020 16:16:48

Run Prediction for One Image

Load an image from the attached testImages folder and resize the image to match the network
image input layer dimensions. Run the predict function of the dlhdl.Workflow object to retrieve
and display the defect prediction from the FPGA.

wi = uint32(320);
he = uint32(240);
ch = uint32(3);

filename = fullfile(pwd,'ok1.png');
img=imread(filename);
img = imresize(img, [he, wi]);
img = mat2ocv(img);

    % Extract ROI for preprocessing
    [Iori, imgPacked, num, bbox] = myNDNet_Preprocess(img);

    % Row-major to column-major conversion
    imgPacked2 = zeros([128,128,4],'uint8');
    for c = 1:4
        for i = 1:128
            for j = 1:128
                imgPacked2(i,j,c) = imgPacked((i-1)*128 + (j-1) + (c-1)*128*128 + 1);
            end
        end
    end

    % classify detected nuts by using CNN
    scores = zeros(2,4);
    for i = 1:num
         [scores(:,i), speed] = hW.predict(single(imgPacked2(:,:,i)),'Profile','on');
    end

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
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                         -------------             -------------              ---------        ---------       ---------
Network                    4892622                  0.02224                       1            4892622             45.0
    conv_1                  467921                  0.00213 
    maxpool_1               188086                  0.00085 
    crossnorm               159500                  0.00072 
    conv_2                  397561                  0.00181 
    maxpool_2                41455                  0.00019 
    fc_1                   3614625                  0.01643 
    fc_2                     23355                  0.00011 
 * The clock frequency of the DL processor is: 220MHz

    
    Iori = reshape(Iori, [1, he*wi*ch]);
    bbox = reshape(bbox, [1,16]);
    scores = reshape(scores, [1, 8]);

    % Insert annotation for postprocessing
    out = myNDNet_Postprocess(Iori, num, bbox, scores, wi, he, ch);

    sz = [he wi ch];
    out = ocv2mat(out,sz);
    imshow(out)

Quantize and Deploy trainedBlemDetNet Network

The trainedBlemDetNet network improves performance to 45 frames per second. The target
performance of the deployed network is 100 frames per second while staying within the target
resource utilization budget. The resource utilization budget takes into consideration parameters such
as memory size and onboard IO. While you can increase the resource utilization budget by choosing a
larger board, doing so increases the cost. Instead, improve the deployed network performance and
stay within the resource utilization budget by quantizing the network. Quantize and deploy the
trainedBlemDetNet network.
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Load the data set as an image datastore. The imageDatastore labels the images based on folder
names and stores the data. Divide the data into calibration and validation data sets. Use 50% of the
images for calibration and 50% of the images for validation. Expedite the calibration and validation
process by using a subset of the calibration and validation image sets.

if ~isfile('dataSet.zip')
        url = 'https://www.mathworks.com/supportfiles/dlhdl/dataSet.zip';
        websave('dataSet.zip',url);
end
unzip('dataSet.zip')
unzip('dataset.zip')
imageData = imageDatastore(fullfile('dataset'),...
'IncludeSubfolders',true,'FileExtensions','.PNG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');
calibrationData_reduced = calibrationData.subset(1:20);
validationData_reduced = validationData.subset(1:1);

Create a quantized network by using the dlquantizer object. Set the target execution environment
to FPGA.

dlQuantObj = dlquantizer(snet_blemdetnet,'ExecutionEnvironment','FPGA')

dlQuantObj = 
  dlquantizer with properties:

           NetworkObject: [1×1 SeriesNetwork]
    ExecutionEnvironment: 'FPGA'

Use the calibrate function to exercise the network by using sample inputs and collect the range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The calibrate function returns a table. Each
row of the table contains range information for a learnable parameter of the quantized network.

dlQuantObj.calibrate(calibrationData_reduced)

ans=21×5 table
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue     MaxValue 
    ____________________________    __________________    ________________________    __________    _________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.29022      0.21403
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                  -0.021907    0.0053595
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.10499      0.13732
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                  -0.010084     0.025773
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"               -0.051599     0.054506
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.0048897    0.0072463
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"               -0.071356     0.064882
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.062086     0.062084
    {'imageinput'              }      {'imageinput'}           "Activations"                   0          255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"             -184.37       241.75
    {'conv_1'                  }      {'conv_1'    }           "Activations"             -112.18       150.51
    {'relu_1'                  }      {'relu_1'    }           "Activations"                   0       150.51
    {'maxpool_1'               }      {'maxpool_1' }           "Activations"                   0       150.51
    {'crossnorm'               }      {'crossnorm' }           "Activations"                   0       113.27
    {'conv_2'                  }      {'conv_2'    }           "Activations"             -117.79       67.125
    {'relu_2'                  }      {'relu_2'    }           "Activations"                   0       67.125
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      ⋮

The trainedBlemDetNet network consists of a Cross Channel Normalization layer. To support this
layer on hardware, the 'LRNBlockGeneration' property of the conv module needs to be turned on in
the bitstream used for FPGA inference. The shipping zcu102_int8 bitstream does not have this
property turned on. A new bitstream can be generated using the following lines of code. The
generated bitstream can be used along with a dlhdl.Workflow object for inference.

When creating a dlhdl.ProcessorConfig object for an existing shipping bitstream, make sure that the
bitstream name matches the data type and the FPGA board that you are targeting. In this example
the target FPGA board is the Xilinx ZCU102 SoC board and the date type is int8. Update the
processor configuration with 'LRNBlockGeneration' turned on and 'SegmentationBlockGeneration'
turned off. Turn the latter off to fit the Deep Learning IP on the FPGA and avoid overutilization of
resources.

% hPC = dlhdl.ProcessorConfig('Bitstream', 'zcu102_int8');
% hPC.setModuleProperty('conv', 'LRNBlockGeneration', 'on');
% hPC.setModuleProperty('conv', 'SegmentationBlockGeneration', 'off');
% dlhdl.buildProcessor(hPC)

To learn how to use the generated bitstream file, see “Generate Custom Bitstream” on page 9-2.

Create an object of the dlhdl.Workflow class. When you create the class, specify the network and
the bitstream name. Make sure to use this newly generated bitstream which enables processing of
Cross Channel Normalization layers on the FPGA. Specify the saved pretrained quantized
trainedblemDetNet object dlQuantObj as the network.

hW = dlhdl.Workflow('Network', dlQuantObj, 'Bitstream', 'dlprocessor.bit','Target',hT);

To compile the quantized network, run the compile function of the dlhdl.Workflow object.

hW.compile('InputFrameNumberLimit',30)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_int8 ...
### The network includes the following layers:

     1   'imageinput'    Image Input                   128×128×1 images with 'zerocenter' normalization                    (SW Layer)
     2   'conv_1'        Convolution                   20 5×5×1 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
     3   'relu_1'        ReLU                          ReLU                                                                (HW Layer)
     4   'maxpool_1'     Max Pooling                   2×2 max pooling with stride [2  2] and padding [0  0  0  0]         (HW Layer)
     5   'crossnorm'     Cross Channel Normalization   cross channel normalization with 5 channels per element             (HW Layer)
     6   'conv_2'        Convolution                   20 5×5×20 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
     7   'relu_2'        ReLU                          ReLU                                                                (HW Layer)
     8   'maxpool_2'     Max Pooling                   2×2 max pooling with stride [2  2] and padding [0  0  0  0]         (HW Layer)
     9   'fc_1'          Fully Connected               512 fully connected layer                                           (HW Layer)
    10   'fc_2'          Fully Connected               2 fully connected layer                                             (HW Layer)
    11   'softmax'       Softmax                       softmax                                                             (SW Layer)
    12   'classoutput'   Classification Output         crossentropyex with classes 'ng' and 'ok'                           (SW Layer)

3 Memory Regions created.

Skipping: imageinput
Compiling leg: conv_1>>maxpool_2 ...
Compiling leg: conv_1>>maxpool_2 ... complete.
Compiling leg: fc_1>>fc_2 ...
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Compiling leg: fc_1>>fc_2 ... complete.
Skipping: softmax
Skipping: classoutput
Creating Schedule...
.........
Creating Schedule...complete.
Creating Status Table...
........
Creating Status Table...complete.
Emitting Schedule...
......
Emitting Schedule...complete.
Emitting Status Table...
..........
Emitting Status Table...complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "16.0 MB"       
    "OutputResultOffset"        "0x01000000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x01400000"     "4.0 MB"        
    "SystemBufferOffset"        "0x01800000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03400000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x03800000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x03c00000"     "12.0 MB"       
    "EndOffset"                 "0x04800000"     "Total: 72.0 MB"

### Network compilation complete.

ans = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device and displays progress messages and the time it takes
to deploy the network.

hW.deploy

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.
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System is rebooting .

 . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Dec-2020 16:18:03
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Dec-2020 16:18:03

Load an image from the attached testImages folder and resize the image to match the network
image input layer dimensions. Run the predict function of the dlhdl.Workflow object to retrieve
and display the defect prediction from the FPGA.

wi = uint32(320);
he = uint32(240);
ch = uint32(3);

filename = fullfile(pwd,'ok1.png');
img=imread(filename);
img = imresize(img, [he, wi]);
img = mat2ocv(img);

    % Extract ROI for preprocessing
    [Iori, imgPacked, num, bbox] = myNDNet_Preprocess(img);

    % row-major > column-major conversion
    imgPacked2 = zeros([128,128,4],'uint8');
    for c = 1:4
        for i = 1:128
            for j = 1:128
                imgPacked2(i,j,c) = imgPacked((i-1)*128 + (j-1) + (c-1)*128*128 + 1);
            end
        end
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    end

    % classify detected nuts by using CNN
    scores = zeros(2,4);
    for i = 1:num
         [scores(:,i), speed] = hW.predict(single(imgPacked2(:,:,i)),'Profile','on');
    end

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    1754969                  0.00798                       1            1754969            125.4
    conv_1                  271340                  0.00123 
    maxpool_1                87533                  0.00040 
    crossnorm               125737                  0.00057 
    conv_2                  149972                  0.00068 
    maxpool_2                19657                  0.00009 
    fc_1                   1085683                  0.00493 
    fc_2                     14928                  0.00007 
 * The clock frequency of the DL processor is: 220MHz

    
    Iori = reshape(Iori, [1, he*wi*ch]);
    bbox = reshape(bbox, [1,16]);
    scores = reshape(scores, [1, 8]);

    % Insert an annotation for postprocessing
    out = myNDNet_Postprocess(Iori, num, bbox, scores, wi, he, ch);

    sz = [he wi ch];
    out = ocv2mat(out,sz);
    imshow(out)
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To test that the quantized network can identify all test cases deploy an additional image, resize the
image to match the network image input layer dimensions, and run the predict function of the
dlhdl.Workflow object to retrieve and display the defect prediction from the FPGA.

wi = uint32(320);
he = uint32(240);
ch = uint32(3);

filename = fullfile(pwd,'okng.png');
img=imread(filename);
img = imresize(img, [he, wi]);
img = mat2ocv(img);

    % Extract ROI for preprocessing
    [Iori, imgPacked, num, bbox] = myNDNet_Preprocess(img);

    % row-major > column-major conversion
    imgPacked2 = zeros([128,128,4],'uint8');
    for c = 1:4
        for i = 1:128
            for j = 1:128
                imgPacked2(i,j,c) = imgPacked((i-1)*128 + (j-1) + (c-1)*128*128 + 1);
            end
        end
    end

    % classify detected nuts by using CNN
    scores = zeros(2,4);
    for i = 1:num
         [scores(:,i), speed] = hW.predict(single(imgPacked2(:,:,i)),'Profile','on');
    end

### Finished writing input activations.
### Running single input activations.
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              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    1754614                  0.00798                       1            1754614            125.4
    conv_1                  271184                  0.00123 
    maxpool_1                87557                  0.00040 
    crossnorm               125768                  0.00057 
    conv_2                  149819                  0.00068 
    maxpool_2                19602                  0.00009 
    fc_1                   1085664                  0.00493 
    fc_2                     14930                  0.00007 
 * The clock frequency of the DL processor is: 220MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    1754486                  0.00797                       1            1754486            125.4
    conv_1                  271014                  0.00123 
    maxpool_1                87662                  0.00040 
    crossnorm               125835                  0.00057 
    conv_2                  149789                  0.00068 
    maxpool_2                19661                  0.00009 
    fc_1                   1085505                  0.00493 
    fc_2                     14930                  0.00007 
 * The clock frequency of the DL processor is: 220MHz

    
    Iori = reshape(Iori, [1, he*wi*ch]);
    bbox = reshape(bbox, [1,16]);
    scores = reshape(scores, [1, 8]);

    % Insert an annotation for postprocessing
    out = myNDNet_Postprocess(Iori, num, bbox, scores, wi, he, ch);

    sz = [he wi ch];
    out = ocv2mat(out,sz);
    imshow(out)
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Quantizing the network improves the performance from 45 frames per second to 125 frames per
second and reduces the deployed network size from 88 MB to 72 MB.
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Profile Network for Performance Improvement

This example shows how to improve the performance of the deployed deep learning network, by
identifying bottle neck layers from the profiler results.

Prerequisites

• Xilinx® ZCU102 SoC development kit.
• Deep Learning HDL Toolbox™ Support Package for Xilinx® FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained SeriesNetwork

To load the pretrained digits series network, enter:

snet = getDigitsNetwork;

% To view the layers of the pretrained series network, enter:
snet.Layers

ans = 
  15×1 Layer array with layers:

     1   'imageinput'    Image Input             28×28×1 images with 'zerocenter' normalization
     2   'conv_1'        Convolution             8 3×3×1 convolutions with stride [1  1] and padding 'same'
     3   'batchnorm_1'   Batch Normalization     Batch normalization with 8 channels
     4   'relu_1'        ReLU                    ReLU
     5   'maxpool_1'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv_2'        Convolution             16 3×3×8 convolutions with stride [1  1] and padding 'same'
     7   'batchnorm_2'   Batch Normalization     Batch normalization with 16 channels
     8   'relu_2'        ReLU                    ReLU
     9   'maxpool_2'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv_3'        Convolution             32 3×3×16 convolutions with stride [1  1] and padding 'same'
    11   'batchnorm_3'   Batch Normalization     Batch normalization with 32 channels
    12   'relu_3'        ReLU                    ReLU
    13   'fc'            Fully Connected         10 fully connected layer
    14   'softmax'       Softmax                 softmax
    15   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes

Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. For Ethernet interface,
enter:

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2020.2. Set up the path to your
installed Xilinx Vivado executable if it is not already set up. For example, to set the toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

For JTAG interface, enter:
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% hTarget = dlhdl.Target('Xilinx','Interface','JTAG');

Create WorkFlow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained digits neural network, snet, as the network. Make
sure that the bitstream name matches the data type and the FPGA board that you are targeting. In
this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single
data type.

hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zcu102_single', 'Target', hTarget);
%
% If running on Xilinx ZC706 board, instead of the above command, 
% uncomment the command below.
%
% hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_single','Target',hTarget);

Compile MNIST Series Network

To compile the MNIST series network, run the compile function of the dlhdl.Workflow object.

dn = hW.compile;

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00800000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02400000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02800000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02c00000"     "4.0 MB"        
    "EndOffset"                 "0x03000000"     "Total: 48.0 MB"

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases.

hW.deploy;

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.

System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 28-Jun-2020 12:24:21
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Load Example Image

Load the example image.

inputImg = imread('five_28x28.pgm');

Run the Prediction

Execute the predict function of the dlhdl.Workflow object that has profile option set to 'on' to
display the latency and throughput results.

[~, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      73231                  0.00033                       1              73273           3002.5
    conv_module              26847                  0.00012 
        conv_1                6618                  0.00003 
        maxpool_1             4823                  0.00002 
        conv_2                4876                  0.00002 
        maxpool_2             3551                  0.00002 
        conv_3                7039                  0.00003 
    fc_module                46384                  0.00021 
        fc                   46384                  0.00021 
 * The clock frequency of the DL processor is: 220MHz

Identify and Display the Bottle Neck Layer

Remove the NumFrames, Total latency, and Frames/s from the profiler's results table. This
includes removing the module level and network level profiler results. Retain only the network layer
profiler results. Once the bottle neck layer has been identified display the bottle neck layer index,
running time, and information.

speed('Network',:) = [];
speed('____conv_module',:) = [];
speed('____fc_module',:)  = [];
speed = removevars(speed, {'NumFrames','Total Latency(cycles)','Frame/s'});

% then sort the profiler's results in descending ordering
speed = sortrows(speed,'Latency(cycles)','descend');

% the first row in the profile table is the bottleneck layer. Thus the
% following 
layerSpeed = speed(1,:);
layerName = strip(layerSpeed.Properties.RowNames{1},'_');
for idx = 1:length(snet.Layers)
    currLayer = snet.Layers(idx);
    if strcmp(currLayer.Name, layerName)
        bottleNeckLayer = currLayer;
        break;
    end
end
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% disply the bottle neck layer index 
dnnfpga.disp(['Bottleneck layer index is ', num2str(idx), '.']);

### Bottleneck layer index is 13.

% disply the bottle neck layer running time percentage  
percent = layerSpeed.("Latency(cycles)")/sum(speed.("Latency(cycles)")) * 100;
dispStr = sprintf('It accounts for about %0.2f percent of the total running time.', percent);
dnnfpga.disp(dispStr);

### It accounts for about 63.29 percent of the total running time.

% disply the bottle neck layer information  
dnnfpga.disp('Bottleneck layer information: ');

### Bottleneck layer information: 

disp(currLayer);

  FullyConnectedLayer with properties:

          Name: 'fc'

   Hyperparameters
     InputSize: 1568
    OutputSize: 10

   Learnable Parameters
       Weights: [10×1568 single]
          Bias: [10×1 single]

  Show all properties
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Bicyclist and Pedestrian Classification by Using FPGA

This example shows how to deploy a custom trained series network to detect pedestrians and
bicyclists based on their micro-Doppler signatures. This network is taken from the Pedestrian and
Bicyclist Classification Using Deep Learning example from the Phased Array Toolbox. For more
details on network training and input data, see Pedestrian and Bicyclist Classification Using Deep
Learning.

Prerequisites

• Xilinx™ Vivado™ Design Suite 2020.2
• Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit
• HDL Verifier™ Support Package for XIlinx FPGA Boards
• MATLAB™ Coder ™ Interface for Deep Learning Libraries
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

The data files used in this example are:

• The MAT File trainedNetBicPed.mat contains a model trained on training data set
trainDataNoCar and its label set trainLabelNoCar.

• The MAT File testDataBicPed.mat contains the test data set testDataNoCar and its label set
testLabelNoCar.

Load Data and Network

Load a pretrained network. Load test data and its labels.

load('trainedNetBicPed.mat','trainedNetNoCar')
load('testDataBicPed.mat')

View the layers of the pre-trained series network

analyzeNetwork(trainedNetNoCar);
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Set up HDL Toolpath

Set up the path to your installed Xilinx™ Vivado™ Design Suite 2020.2 executable if it is not already
set up. For example, to set the toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado','ToolPath', 'C:\Vivado\2020.2\bin');

Create Target Object

Create a target object for your target device with a vendor name and an interface to connect your
target device to the host computer. Interface options are JTAG (default) and Ethernet. Vendor options
are Intel or Xilinx. Use the installed Xilinx Vivado Design Suite over an Ethernet connection to
program the device.

hT = dlhdl.Target('Xilinx', 'Interface', 'Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pre-trained series network, trainedNetNoCar, as the
network. Make sure the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Zynq UltraScale+ MPSoC ZCU102 board.
The bitstream uses a single data type. .

hW = dlhdl.Workflow('Network', trainedNetNoCar, 'Bitstream', 'zcu102_single', 'Target', hT);
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Compile trainedNetNoCar Series Network

To compile the trainedNetNoCar series network, run the compile function of the dlhdl.Workflow
object .

dn = hW.compile;

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "28.0 MB"       
    "OutputResultOffset"        "0x01c00000"     "4.0 MB"        
    "SystemBufferOffset"        "0x02000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x04000000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x04400000"     "4.0 MB"        
    "EndOffset"                 "0x04800000"     "Total: 72.0 MB"

Program the Bitstream onto FPGA and Download Network Weights

To deploy the network on the Zynq® UltraScale+™ MPSoC ZCU102 hardware, run the deploy
function of the dlhdl.Workflow object . This function uses the output of the compile function to
program the FPGA board by using the programming file.The function also downloads the network
weights and biases. The deploy function checks for the Xilinx Vivado tool and the supported tool
version. It then starts programming the FPGA device by using the bitstream, displays progress
messages and the time it takes to deploy the network.

hW.deploy;

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Run Predictions on Micro-Doppler Signatures

Classify one input from the sample test data set by using the predict function of the
dlhdl.Workflow object and display the label. The inputs to the network correspond to the
sonograms of the micro-Doppler signatures for a pedestrian or a bicyclist or a combination of both.

testImg = single(testDataNoCar(:, :, :, 1));
testLabel = testLabelNoCar(1);
classnames = trainedNetNoCar.Layers(end).Classes;

% Get predictions from network on single test input
score = hW.predict(testImg, 'Profile', 'On')

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    9430692                  0.04287                       1            9430707             23.3
    conv_module            9411355                  0.04278 
        conv_1             4178753                  0.01899 
        maxpool_1          1394883                  0.00634 
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        conv_2             1975197                  0.00898 
        maxpool_2           706156                  0.00321 
        conv_3              813598                  0.00370 
        maxpool_3           121790                  0.00055 
        conv_4              148165                  0.00067 
        maxpool_4            22255                  0.00010 
        conv_5               41999                  0.00019 
        avgpool2d             8674                  0.00004 
    fc_module                19337                  0.00009 
        fc                   19337                  0.00009 
 * The clock frequency of the DL processor is: 220MHz

score = 1×5 single row vector

    0.9956    0.0000    0.0000    0.0044    0.0000

[~, idx1] = max(score);
predTestLabel = classnames(idx1)

predTestLabel = categorical
     ped 

Load five random images from the sample test data set and execute the predict function of the
dlhdl.Workflow object to display the labels alongside the signatures. The predictions will happen
at once since the input is concatenated along the fourth dimension.

numTestFrames = size(testDataNoCar, 4);
numView = 5;
listIndex = randperm(numTestFrames, numView);
testImgBatch = single(testDataNoCar(:, :, :, listIndex));
testLabelBatch = testLabelNoCar(listIndex);

% Get predictions from network using DL HDL Toolbox on FPGA
[scores, speed] = hW.predict(testImgBatch, 'Profile', 'On');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    9446929                  0.04294                       5           47138869             23.3
    conv_module            9427488                  0.04285 
        conv_1             4195175                  0.01907 
        maxpool_1          1394705                  0.00634 
        conv_2             1975204                  0.00898 
        maxpool_2           706332                  0.00321 
        conv_3              813499                  0.00370 
        maxpool_3           121869                  0.00055 
        conv_4              148063                  0.00067 
        maxpool_4            22019                  0.00010 
        conv_5               42053                  0.00019 
        avgpool2d             8684                  0.00004 
    fc_module                19441                  0.00009 
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        fc                   19441                  0.00009 
 * The clock frequency of the DL processor is: 220MHz

[~, idx2] = max(scores, [], 2);
predTestLabelBatch = classnames(idx2);

% Display the micro-doppler signatures along with the ground truth and
% predictions.
for k = 1:numView
    index = listIndex(k);
    imagesc(testDataNoCar(:, :, :, index));
    axis xy
    xlabel('Time (s)')
    ylabel('Frequency (Hz)')
    title('Ground Truth: '+string(testLabelNoCar(index))+', Prediction FPGA: '+string(predTestLabelBatch(k)))
    drawnow;
    pause(3);
end

The image shows the micro-Doppler signatures of two bicyclists (bic+bic) which is the ground truth.
The ground truth is the classification of the image against which the network prediction is compared.
The network prediction retrieved from the FPGA correctly predicts that the image has two bicyclists.
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Visualize Activations of a Deep Learning Network by Using
LogoNet

This example shows how to feed an image to a convolutional neural network and display the
activations of the different layers of the network. Examine the activations and discover which
features the network learns by comparing areas of activation to the original image. Channels in
earlier layers learn simple features like color and edges, while channels in the deeper layers learn
complex features. Identifying features in this way can help you understand what the network has
learned.

Logo Recognition Network

Logos assist in brand identification and recognition. Many companies incorporate their logos in
advertising, documentation materials, and promotions. The logo recognition network (LogoNet) was
developed in MATLAB® and can recognize 32 logos under various lighting conditions and camera
motions. Because this network focuses only on recognition, you can use it in applications where
localization is not required.

Prerequisites

• Intel® Arria10 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Intel FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Computer Vision Toolbox™

Load Pretrained Series Network

To load the pretrained series network LogoNet, enter:

snet = getLogoNetwork;

Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install
Intel™ Quartus™ Prime Standard Edition 20.1. Set up the path to your installed Intel Quartus Prime
executable if it is not already set up. For example, to set the toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Altera Quartus II','ToolPath', 'C:\altera\20.1\quartus\bin64');

To create the target object, enter:

hTarget = dlhdl.Target('Intel','Interface','JTAG');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained LogoNet neural network, snet, as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Intel Arria10 SOC board. The bitstream uses
a single data type.
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hW = dlhdl.Workflow('network', snet, 'Bitstream', 'arria10soc_single','Target',hTarget);

Read and show an image. Save its size for future use.

im = imread('ferrari.jpg');
imshow(im)

imgSize = size(im);
imgSize = imgSize(1:2);

View Network Architecture

Analyze the network to see which layers you can view. The convolutional layers perform convolutions
by using learnable parameters. The network learns to identify useful features, often including one
feature per channel. The first convolutional layer has 64 channels.

analyzeNetwork(snet)

The Image Input layer specifies the input size. Before passing the image through the network, you
can resize it. The network can also process larger images.. If you feed the network larger images, the
activations also become larger. Because the network is trained on images of size 227-by-227, it is not
trained to recognize larger objects or features.

Show Activations of First Maxpool Layer

Investigate features by observing which areas in the maxpool layers activate on an image and
comparing that image to the corresponding areas in the original images. Each layer of a convolutional
neural network consists of many 2-D arrays called channels. Pass the image through the network and
examine the output activations of the maxpool_1 layer.

act1 = hW.activations(single(im),'maxpool_1','Profiler','on');

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________
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    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "136.0 MB"       
    "SystemBufferOffset"        "0x0a000000"     "64.0 MB"        
    "InstructionDataOffset"     "0x0e000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x0e800000"     "4.0 MB"         
    "EndOffset"                 "0x0ec00000"     "Total: 236.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   10182024                  0.06788                       1           10182034             14.7
    conv_module           10182024                  0.06788 
        conv_1             7088885                  0.04726 
        maxpool_1          3093166                  0.02062 
 * The clock frequency of the DL processor is: 150MHz

The activations are returned as a 3-D array, with the third dimension indexing the channel on the
maxpool_1 layer. To show these activations using the imtile function, reshape the array to 4-D. The
third dimension in the input to imtile represents the image color. Set the third dimension to have
size 1 because the activations do not have color. The fourth dimension indexes the channel.

sz = size(act1);
act1 = reshape(act1,[sz(1) sz(2) 1 sz(3)]);

Display the activations. Each activation can take any value, so normalize the output using the
mat2gray. All activations are scaled so that the minimum activation is 0 and the maximum activation
is 1. Display the 96 images on an 12-by-8 grid, one for each channel in the layer.

I = imtile(mat2gray(act1),'GridSize',[12 8]);
imshow(I)
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Investigate Activations in Specific Channels

Each tile in the activations grid is the output of a channel in the maxpool_1 layer. White pixels
represent strong positive activations and black pixels represent strong negative activations. A
channel that is mostly gray does not activate as strongly on the input image. The position of a pixel in
the activation of a channel corresponds to the same position in the original image. A white pixel at a
location in a channel indicates that the channel is strongly activated at that position.

Resize the activations in channel 33 to be the same size as the original image and display the
activations.

act1ch33 = act1(:,:,:,22);
act1ch33 = mat2gray(act1ch33);
act1ch33 = imresize(act1ch33,imgSize);

I = imtile({im,act1ch33});
imshow(I)

Find Strongest Activation Channel

Find interesting channels by programmatically investigating channels with large activations. Find the
channel that has the largest activation by using the max function, resize the channel output, and
display the activations.

[maxValue,maxValueIndex] = max(max(max(act1)));
act1chMax = act1(:,:,:,maxValueIndex);
act1chMax = mat2gray(act1chMax);
act1chMax = imresize(act1chMax,imgSize);

I = imtile({im,act1chMax});
imshow(I)
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Compare the strongest activation channel image to the original image. This channel activates on
edges. It activates positively on light left/dark right edges and negatively on dark left/light right
edges.

See Also

More About
• activations
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Authoring a Reference Design for Live Camera Integration with
Deep Learning Processor IP Core

This example shows how to create an HDL Coder™ reference design that contains a generated deep
learning processor IP core. The reference design receives a live camera input and uses a deployed
series network to classify the objects in the camera input. This figure is a high-level architectural
diagram that shows the reference design that will be implemented on the Xilinx™ Zynq™ Ultrascale+
(TM) MPsoC ZCU102 Evaluation Kit.

The user IP core block:

• Extracts the region of interest (ROI) based on ROI dimensions from the processing system (PS)
(ARM).

• Performs downsampling on the input image.
• Zero-centers the input image.
• Transfers the preprocessed image to the external DDR memory.
• Triggers the deep learning processor IP core.
• Notifies the PS(ARM) processor.

The deep learning processor IP core accesses the preprocessed inputs, performs the object
classification and loads the output results back into the external DDR memory.

The PS (ARM):

• Takes the ROI dimensions and passes them to the user IP core.
• Performs post-processing on the image data.
• Annotates the object classification results from the deep learning processor IP core on the output

video frame.
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You can also use MATLAB® to retrieve the classification results and verify the generated deep
learning processor IP core. The user DUT for this reference design is the preprocessing algorithm
(User IP Core). You can design the preprocessing DUT algorithm in Simulink®, generate the DUT IP
core, and integrate the generated DUT IP core into the larger system that contains the deep learning
processor IP core. To learn how to generate the DUT IP core, see “Run a Deep Learning Network on
FPGA with Live Camera Input” on page 10-67.

Generate Deep Learning Processor IP Core

Follow these steps to configure and generate the deep learning processor IP core into the reference
design.

1. Create a custom deep learning processor configuration.

hPC = dlhdl.ProcessorConfig

To learn more about the deep learning processor architecture, see “Deep Learning Processor IP Core
Architecture” on page 2-2. To get information about the custom processor configuration parameters
and modifying the parameters, see getModuleProperty and setModuleProperty.

2. Generate the Deep Learning Processor IP core.

To learn how to generate the custom deep learning processor IP, see “Generate Custom Processor IP”
on page 9-3. The deep learning processor IP core is generated by using the HDL Coder™ IP core
generation workflow. For more information, see “Custom IP Core Generation” (HDL Coder).

dlhdl.buildProcessor(hPC)

The generated IP core files are located at cwd\dlhdl_prj\ipcore. cwd is the current working
directory. The ipcore folder contains an HTML report located at cwd\dlhdl_prj\ipcore
\DUT_ip_v1_0\doc.
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The HTML report contains a description of the deep learning processor IP core, instructions for using
the core and integrating the core into your Vivado™ reference design, and a list of AXI4 registers.
You will need the AXI4 register list to enter addresses into the Vivado™ Address Mapping tool. For
more information about the AXI4 registers, see “Deep Learning Processor IP Core Report” on page
12-14.

Integrate the Generated Deep Learning Processor IP Core into the Reference Design

Insert the generated deep learning processor IP core into your reference design. After inserting the
generated deep learning processor IP core into the reference design, you must:

• Connect the generated deep learning processor IP core AXI4 slave interface to an AXI4 master
device such as a JTAG AXI master IP core or a Zynq™ processing system (PS). Use the AXI4
master device to communicate with the deep learning processor IP core.

• Connect the vendor provided external memory interface IP core to the three AXI4 master
interfaces of the generated deep learning processor IP core.

The deep learning processor IP core uses the external memory interface to access the external DDR
memory. The image shows the deep learning processor IP core integrated into the Vivado™ reference
design and connected to the DDR memory interface generator (MIG) IP.
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Connect the External Memory Interface Generator

In your Vivado™ reference design add an external memory interface generator (MIG) block and
connect the generated deep learning processor IP core to the MIG module. The MIG module is
connected to the processor IP core through an AXI interconnect module. The image shows the high
level architectural design and the Vivado™ reference design implementation.

Create the Reference Design Definition File

The following code describes the contents of the ZCU102 reference design definition file
plugin_rd.m for the above Vivado™ reference design. For more details on how to define and register
the custom board, refer to the “Define Custom Board and Reference Design for Zynq Workflow” (HDL
Coder).

function hRD = plugin_rd(varargin)

% Parse config
config = ZynqVideoPSP.common.parse_config(...
   'ToolVersion', '2019.1', ...
   'Board', 'zcu102', ...
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    'Design', 'visionzynq_base', ...
   'ColorSpace', 'RGB' ...
);
% Construct reference design object
hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');
hRD.BoardName = ZynqVideoPSP.ZCU102Hdmicam.BoardName();
hRD.ReferenceDesignName = 'HDMI RGB with DL Processor';
% Tool information
hRD.SupportedToolVersion = {'2019.1'}
...

Verify the Reference Design

After creating the reference design, use the HDL Coder™ IP core generation workflow to generate
the bitstream and program the ZCU102 board. You can then use MATLAB® and a dlhdl.Workflow
object to verify the deep learning processor IP core or you can use the HDL Coder™ workflow to
prototype the entire system. To verify the reference design, see “Run a Deep Learning Network on
FPGA with Live Camera Input” on page 10-67.
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Run a Deep Learning Network on FPGA with Live Camera Input

This example shows how to model preprocessing logic that receives a live camera input. You
implement it on a Zynq® Ultrascale+™ MPSoC ZCU102 board by using a custom video reference
design that has an integrated deep learning processor IP core for object classification. This example
uses the HDL Coder™ HW/SW co-design workflow. For this example, you need:

• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices
• Deep Learning Toolbox™
• HDL Coder™
• Simulink™

Introduction

In this example, you:

1 Model the preprocessing logic that processes the live camera input for the deep learning
processor IP core. The processed video frame is sent to the external DDR memory on the FPGA
board.

2 Simulate the model in Simulink® to verify the algorithm functionality.
3 Implement the preprocessing logic on a ZCU102 board by using a custom video reference design

which includes the generated deep learning processor IP core.
4 Individually validate the preprocessing logic on the FPGA board.
5 Individually validate the deep learning processor IP core functionality by using the Deep

Learning HDL Toolbox™ prototyping workflow.
6 Deploy and validate the entire system on a ZCU102 board.

This figure is a high-level architectural diagram of the system. The result of the deep learning
network prediction is sent to the ARM processor. The ARM processor annotates the deep learning
network prediction onto the output video frame.
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The objective of this system is to receive the live camera input through the HDMI input of the FMC
daughter card on the ZCU102 board. You design the preprocessing logic in Simulink® to select and
resize the region of interest (ROI). You then transmit the processed image frame to the deep learning
processor IP core to run image classification by using a deep learning network.

Select and Resize the Region of Interest

Model the preprocessing logic to process the live camera input for the deep learning network and
send the video frame to external DDR memory on the FPGA board. This logic is modeled in the DUT
subsystem:

• Image frame selection logic that allows you to use your cursor to choose an ROI from the incoming
camera frame. The selected ROI is the input to the deep learning network.

• Image resizing logic that resizes the ROI image to match the input image size of the deep learning
network.

• AXI4 Master interface logic that sends the resized image frame into the external DDR memory,
where the deep learning processor IP core reads the input. To model the AXI4 Master interface,
see “Model Design for AXI4 Master Interface Generation” (HDL Coder).

This figure shows the Simulink® model for the preprocessing logic DUT.
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Generate Preprocessing Logic HDL IP Core

To implement the preprocessing logic model on a ZCU102 SoC board, create an HDL Coder™
reference design in Vivado™ which receives the live camera input and transmits the processed video
data to the deep learning processor IP core. To create a custom video reference design that
integrates the deep learning processor IP core, see “Authoring a Reference Design for Live Camera
Integration with Deep Learning Processor IP Core” on page 10-62.

Start the HDL Coder HDL Workflow Advisor and use the Zynq hardware-software co-design workflow
to deploy the preprocessing logic model on Zynq hardware. This workflow is the standard HDL Coder
workflow. In this example the only difference is that this reference design contains the generated
deep learning processor IP core. For more details refer to the “Getting Started with Targeting Xilinx
Zynq Platform” (HDL Coder) example.

1. Start the HDL Workflow Advisor from the model by right-clicking the DLPreProcess DUT
subsystem and selecting HDL Advisor Workflow.

In Task 1.1, IP Core Generation is selected for Target workflow and ZCU102-FMC-HDMI-CAM is
selected for Target platform.
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In Task 1.2, HDMI RGB with DL Processor is selected for Reference Design.
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In Task 1.3, the Target platform interface table is loaded as shown in the following screenshot.
Here you can map the ports of the DUT subsystem to the interfaces in the reference design.

 Run a Deep Learning Network on FPGA with Live Camera Input

10-71



2. Right-click Task 3.2, Generate RTL Code and IP Core, and then select Run to Selected Task.
You can find the register address mapping and other documentation for the IP core in the generated
IP Core Report.

Integrate IP into the Custom Video Reference Design

In the HDL Workflow Advisor, run the Embedded System Integration tasks to deploy the generated
HDL IP core on Zynq hardware.

1. Run Task 4.1, Create Project. This task inserts the generated IP core into the HDMI RGB with
DL Processor reference design. To create a reference design that integrates the deep learning
processor IP core, see “Authoring a Reference Design for Live Camera Integration with Deep
Learning Processor IP Core” on page 10-62.

2. Click the link in the Result pane to open the generated Vivado project. In the Vivado tool, click
Open Block Design to view the Zynq design diagram, which includes the generated preprocessing
HDL IP core, the deep learning processor IP core and the Zynq processor.
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3. In the HDL Workflow Advisor, run the rest of the tasks to generate the software interface model
and build and download the FPGA bitstream.

Deploy and Validate the Integrated Reference Design

To validate the integrated reference design that includes the generated preprocessing logic IP core,
deep learning processor IP core, and the Zynq processor:

1 Individually validate the preprocessing logic on the FPGA board.
2 Individually validate the deep learning processor IP core functionality by using the Deep

Learning HDL Toolbox™ prototyping workflow.
3 Deploy and validate the entire system on a ZCU102 board.
4 Deploy the entire system as an executable file on the SD card on the ZCU102 board.

1. Using the standard HDL Coder hardware/software co-design workflow, you can validate that the
preprocessing logic works as expected on the FPGA. The HDL Workflow Advisor generates a software
interface subsystem during Task 4.2 Generate Software Interface Model, which you can use in
your software model for interfacing with the FPGA logic. From the software model, you can tune and
probe the FPGA design on the hardware by using Simulink External Mode. Instruct the FPGA
preprocessing logic to capture an input frame and send it to the external DDR memory.

You can then use fpga object to create a connection from MATLAB to the ZCU102 board and read
the contents of the external DDR memory into MATLAB for validation. to use the fpga object, see
“Create Host Interface Script to Control and Rapidly Prototype HDL IP Core” (HDL Coder).
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2. The generated deep learning processor IP core has Ethernet and JTAG interfaces for
communications in the generated bitstream. You can individually validate the deep learning processor
IP core by using the dlhdl.Workflow object.

3. After you individually validate the preprocessing logic IP core and the deep learning processor IP
core, you can prototype the entire integrated system on the FPGA board. Using Simulink External
mode, instruct the FPGA preprocessing logic to send a processed input image frame to the DDR
buffer, instruct the deep learning processor IP core to read from the same DDR buffer, and execute
the prediction.

The deep learning processor IP core sends the result back to the external DDR memory. The software
model running on the ARM processor retrieves the prediction result and annotates the prediction on
the output video stream. This screenshot shows that you can read the ARM processor prediction
result by using a serial connection.
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This screenshot shows the frame captured from the output video stream which includes the ROI
selection and the annotated prediction result.
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4. After completing all your verification steps, manually deploy the entire reference design as an
executable on the SD card on the ZCU102 board by using the ARM processor. Once the manual
deployment is completed a MATLAB connection to the FPGA board is not required to operate the
reference design.
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Running Convolution-Only Networks by Using FPGA
Deployment

Typical series classification networks include a sequence of convolution layers followed by one or
more fully connected layers. Recent research results indicate that better performance is achieved for
feature extraction and recognition by using the convolution layer activations directly, instead of those
from the subsequent fully connected layers.

To understand and debug convolutional networks, running and visualizing data is a useful tool. This
example shows how to deploy, run, and debug a convolution-only network by using FPGA
deployment..

Prerequisites

• Xilinx™ Zynq™ ZCU102 Evaluation Kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox™ Model for Resnet-50 Network

Resnet-50 Network

ResNet-50 is a convolutional neural network that is 50 layers deep. This pretrained network can
classify images into 1000 object categories (such as keyboard, mouse, pencil, and more).The network
has learned rich feature representations for a wide range of images. The network has an image input
size of 224-by-224. This example uses ResNet50 as a starting point.

Load Resnet-50 Network

Load the ResNet-50 network.

rnet = resnet50;

To visualize the structure of the Resnet-50 network, at the MATLAB® command prompt, enter:

analyzeNetwork(rnet)

Create A Convolution Only Network

A convolution only network is created by selecting a subset of the ResNet-50 network. The subset
includes only the first five layers of the ResNet50 network which are convolutional in nature.

To create the convolution only network, enter:

layers = rnet.Layers(1:5);
outLayer = regressionLayer('Name','output');
layers(end+1) = outLayer;

snet = assembleNetwork(layers);
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Create Target Object

To deploy the network on an FPGA, create a target object with a custom name and an interface to
connect your target device to the host computer. Interface options are JTAG and Ethernet. To use
JTAG, install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath, enter:

%hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'D:/share/apps/HDLTools/Vivado/2020.2-mw-0/Win/Vivado/2020.2\bin\vivado.bat');

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained convolutional only network, snet, as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream
uses a single data type. Use the dlhdl.Workflow object to deploy networks which include both
convolution and fully connected layers or only convolution layers.

hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zcu102_single','Target',hTarget);

Compile Convolution Only Network

To compile the convolution only network, run the compile function of the dlhdl.Workflow object.

hW.compile

dn = hW.compile

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"       
    "OutputResultOffset"        "0x01800000"     "24.0 MB"       
    "SystemBufferOffset"        "0x03000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x04c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x05000000"     "4.0 MB"        
    "EndOffset"                 "0x05400000"     "Total: 84.0 MB"

dn = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. The function also downloads the network weights and biases.
The deploy function programs the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
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Load Example Image

Load and display an image to use as an input image to the series network.

I = imread('daisy.jpg');
imshow(I)

Run the Prediction

Execute the predict function of the dlhdl.Workflow object.

[P, speed] = hW.predict(single(I),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    2813005                  0.01279                       1            2813015             78.2
    conv_module            2813005                  0.01279 
        conv1              2224168                  0.01011 
        max_pooling2d_1     588864                  0.00268 
 * The clock frequency of the DL processor is: 220MHz

The result data is returned as a 3-D array, with the third dimension indexing across the 64 feature
images.

sz = size(P)

sz = 1×3

    56    56    64

 Running Convolution-Only Networks by Using FPGA Deployment

10-79



To visualize all 64 features in a single image, the data is reshaped into four dimensions, which is
appropriate input to the imtile function

R = reshape(P, [sz(1) sz(2) 1 sz(3)]);
sz = size(R)

sz = 1×4

    56    56     1    64

The third dimension in the input to imtile function represents the image color. Set the third
dimension to size 1 because the activation signals in this example are scalars and do not include
color. The fourth dimension indexes the channel.

The input to imtile is normalized using mat2gray. All values are scaled so that the minimum
activation is 0 and the maximum activation is 1.

J = imtile(mat2gray(R), 'GridSize', [8 8]);

A grid size of 8-by-8 is selected because there are 64 features to display.

imshow(J)
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The image shows activation data for each of the 64 features. Bright features indicate a strong
activation.

The output from the convolutional layers only network differs from that of a network with convolution
and fully connected layers. Convolution layers are used to reduce the input image size while
maintaining features which are needed to get a good prediction. Convolution only layer networks are
used to study feature extraction. Earlier convolution layers are used to extract low level features such
as edges, colors, gradients and so on. Later convolution layers are used to extract high level features
such as patterns, curves, lines and so on. These high level features can then be used to identify
objects.
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Accelerate Prototyping Workflow for Large Networks by Using
Ethernet

This example shows how to deploy a deep learning network and obtain prediction results using the
Ethernet connection to your target device. You can significantly speed up the deployment and
prediction times for large deep learning networks by using Ethernet versus JTAG. This example shows
the workflow on a ZCU102 SoC board. The example also works on the other boards supported by
Deep Learning HDL Toolbox. See “Supported Networks, Layers, Boards, and Tools” on page 7-2.

Prerequisites

• Xilinx ZCU102 SoC Development Kit. For help with board setup, see “Guided SD Card Set Up”
(Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices).

• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox™ Model for ResNet-18 Network

Introduction

Deep Learning HDL Toolbox establishes a connection between the host computer and FPGA board to
prototype deep learning networks on hardware. This connection is used to deploy deep learning
networks and run predictions. The connection provides two services:

• Programming the bitstream onto the FPGA
• Communicating with the design running on FPGA from MATLAB

There are two hardware interfaces for establishing a connection between the host computer and
FPGA board: JTAG and Ethernet.

JTAG Interface

The JTAG interface, programs the bitstream onto the FPGA over JTAG. The bitstream is not persistent
through power cycles. You must reprogram the bitstream each time the FPGA is turned on.

MATLAB uses JTAG to control an AXI Master IP in the FPGA design, to communicate with the design
running on the FPGA. You can use the AXI Master IP to read and write memory locations in the
onboard memory and deep learning processor.

This figure shows the high-level architecture of the JTAG interface.
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Ethernet Interface

The Ethernet interface leverages the ARM processor to send and receive information from the design
running on the FPGA. The ARM processor runs on a Linux operating system. You can use the Linux
operating system services to interact with the FPGA. When using the Ethernet interface, the
bitstream is downloaded to the SD card. The bitstream is persistent through power cycles and is
reprogrammed each time the FPGA is turned on. The ARM processor is configured with the correct
device tree when the bitstream is programmed.

To communicate with the design running on the FPGA, MATLAB leverages the Ethernet connection
between the host computer and ARM processor. The ARM processor runs a LIBIIO service, which
communicates with a datamover IP in the FPGA design. The datamover IP is used for fast data
transfers between the host computer and FPGA, which is useful when prototyping large deep
learning networks that would have long transfer times over JTAG. The ARM processor generates the
read and write transactions to access memory locations in both the onboard memory and deep
learning processor.

The figure below shows the high-level architecture of the Ethernet interface.

Load and Compile Deep Learning Network

This example uses the pretrained DAG network resnet18. This network is a larger network that has
significant improvement in transfer time when deploying it to the FPGA by using Ethernet. To load
resnet18, run the command:

net = resnet18;
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The pretrained ResNet-18 network contains 71 layers including the input, convolution, batch
normalization, ReLU, max pooling, addition, global average pooling, fully connected, and the softmax
layers. To view the layers of the network enter:

analyzeNetwork(net);

To deploy the deep learning network on the target FPGA board, create a dlhdl.Workflow object
that has the pretrained network net as the network and the bitstream for your target FPGA board.
This example uses the bitstream 'zcu102_single', which has single data type and is configured for
the ZCU102 board. To run this example on a different board, use the bitstream for your board.

hW = dlhdl.Workflow('Network', net, 'Bitstream', 'zcu102_single');

Compile the resnet18 network for deployment to the FPGA.

compile(hW);

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### The network includes the following layers:
     1   'data'                              Image Input                  224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                             Convolution                  64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'bn_conv1'                          Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     4   'conv1_relu'                        ReLU                         ReLU                                                                  (HW Layer)
     5   'pool1'                             Max Pooling                  3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     6   'res2a_branch2a'                    Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     7   'bn2a_branch2a'                     Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     8   'res2a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
     9   'res2a_branch2b'                    Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
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    10   'bn2a_branch2b'                     Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    11   'res2a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    12   'res2a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    13   'res2b_branch2a'                    Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    14   'bn2b_branch2a'                     Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    15   'res2b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    16   'res2b_branch2b'                    Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    17   'bn2b_branch2b'                     Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    18   'res2b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    19   'res2b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    20   'res3a_branch2a'                    Convolution                  128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    21   'bn3a_branch2a'                     Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    22   'res3a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    23   'res3a_branch2b'                    Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'bn3a_branch2b'                     Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    25   'res3a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    26   'res3a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    27   'res3a_branch1'                     Convolution                  128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    28   'bn3a_branch1'                      Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    29   'res3b_branch2a'                    Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    30   'bn3b_branch2a'                     Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    31   'res3b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    32   'res3b_branch2b'                    Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'bn3b_branch2b'                     Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    34   'res3b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    35   'res3b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    36   'res4a_branch2a'                    Convolution                  256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    37   'bn4a_branch2a'                     Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    38   'res4a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    39   'res4a_branch2b'                    Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'bn4a_branch2b'                     Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    41   'res4a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res4a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    43   'res4a_branch1'                     Convolution                  256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    44   'bn4a_branch1'                      Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    45   'res4b_branch2a'                    Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'bn4b_branch2a'                     Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    47   'res4b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    48   'res4b_branch2b'                    Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    49   'bn4b_branch2b'                     Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    50   'res4b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    51   'res4b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    52   'res5a_branch2a'                    Convolution                  512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    53   'bn5a_branch2a'                     Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    54   'res5a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    55   'res5a_branch2b'                    Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    56   'bn5a_branch2b'                     Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    57   'res5a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    58   'res5a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    59   'res5a_branch1'                     Convolution                  512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    60   'bn5a_branch1'                      Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    61   'res5b_branch2a'                    Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    62   'bn5b_branch2a'                     Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    63   'res5b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    64   'res5b_branch2b'                    Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    65   'bn5b_branch2b'                     Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    66   'res5b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    67   'res5b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
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    68   'pool5'                             2-D Global Average Pooling   2-D global average pooling                                            (HW Layer)
    69   'fc1000'                            Fully Connected              1000 fully connected layer                                            (HW Layer)
    70   'prob'                              Softmax                      softmax                                                               (HW Layer)
    71   'ClassificationLayer_predictions'   Classification Output        crossentropyex with 'tench' and 999 other classes                     (SW Layer)
                                                                                                                                              
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' of type 'ImageInputLayer' is split into 'data', 'data_norm_add', and 'data_norm'.
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: conv1>>pool1 ...
### Compiling layer group: conv1>>pool1 ... complete.
### Compiling layer group: res2a_branch2a>>res2a_branch2b ...
### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete.
### Compiling layer group: res2b_branch2a>>res2b_branch2b ...
### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete.
### Compiling layer group: res3a_branch1 ...
### Compiling layer group: res3a_branch1 ... complete.
### Compiling layer group: res3a_branch2a>>res3a_branch2b ...
### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete.
### Compiling layer group: res3b_branch2a>>res3b_branch2b ...
### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete.
### Compiling layer group: res4a_branch1 ...
### Compiling layer group: res4a_branch1 ... complete.
### Compiling layer group: res4a_branch2a>>res4a_branch2b ...
### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete.
### Compiling layer group: res4b_branch2a>>res4b_branch2b ...
### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete.
### Compiling layer group: res5a_branch1 ...
### Compiling layer group: res5a_branch1 ... complete.
### Compiling layer group: res5a_branch2a>>res5a_branch2b ...
### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete.
### Compiling layer group: res5b_branch2a>>res5b_branch2b ...
### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete.
### Compiling layer group: pool5 ...
### Compiling layer group: pool5 ... complete.
### Compiling layer group: fc1000 ...
### Compiling layer group: fc1000 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "4.0 MB"         
    "SchedulerDataOffset"       "0x01c00000"     "8.0 MB"         
    "SystemBufferOffset"        "0x02400000"     "28.0 MB"        
    "InstructionDataOffset"     "0x04000000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x04400000"     "52.0 MB"        
    "FCWeightDataOffset"        "0x07800000"     "4.0 MB"         
    "EndOffset"                 "0x07c00000"     "Total: 124.0 MB"

### Network compilation complete.

The output displays the size of the compiled network which is 124 MB. The entire 124 MB is
transferred to the FPGA by using the deploy method. Due to the large size of the network, the
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transfer can take a significant amount of time if using JTAG. When using Ethernet, the transfer
happens quickly.

Deploy Deep Learning Network to FPGA

Before deploying a network, you must first establish a connection to the FPGA board. The
dlhdl.Target object represents this connection between the host computer and the FPGA. Create
two target objects, one for connection through the JTAG interface and one for connection through the
Ethernet interface. To use the JTAG connection, install Xilinx™ Vivado™ Design Suite 2020.2 and set
the path to your installed Xilinx Vivado executable if it is not already set up.

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');
hTargetJTAG = dlhdl.Target('Xilinx', 'Interface', 'JTAG')

hTargetJTAG = 
  TargetJTAG with properties:

    Interface: JTAG
       Vendor: 'Xilinx'

hTargetEthernet = dlhdl.Target('Xilinx', 'Interface', 'Ethernet')

hTargetEthernet = 
  TargetEthernet with properties:

    Interface: Ethernet
    IPAddress: '192.168.1.101'
     Username: 'root'
         Port: 22
       Vendor: 'Xilinx'

To deploy the network, assign the target object to the dlhdl.Workflow object and execute the
deploy method. The deployment happens in two stages. First, the bitstream is programmed onto the
FPGA. Then, the network is transferred to the onboard memory.

Select the JTAG interface and time the operation. This operation might take several minutes.

hW.Target = hTargetJTAG;
tic;
deploy(hW);

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 13-Dec-2021 13:55:43
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 13-Dec-2021 13:55:51

elapsedTimeJTAG = toc

elapsedTimeJTAG = 419.3838

Use the Ethernet interface by setting the dlhdl.Workflow target object to hTargetEthernet and
running the deploy function. There is a significant acceleration in the network deployment when you
use Ethernet to deploy the bitstream and network to the FPGA.
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hW.Target = hTargetEthernet;
tic;
deploy(hW);

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.

System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 13-Dec-2021 13:56:31
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 13-Dec-2021 13:56:31

elapsedTimeEthernet = toc

elapsedTimeEthernet = 39.4850

Changing from JTAG to Ethernet, the deploy function reprograms the bitstream, which accounts for
most of the elapsed time. Reprogramming is due to different methods that are used to program the
bitstream for the different hardware interfaces. The Ethernet interface configures the ARM processor
and uses a persistent programming method so that the bitstream is reprogrammed each time the
board is turned on. When deploying different deep learning networks by using the same bitstream
and hardware interface, you can skip the bitstream programming, which further speeds up network
deployment.

Run Prediction for Example Image

Run a prediction for an example image by using the predict method.

imgFile = 'monitor.jpg';
inputImg = imresize(imread(imgFile), [224,224]);
imshow(inputImg)
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prediction = predict(hW,single(inputImg));

### Finished writing input activations.
### Running single input activation.

[val, idx] = max(prediction);
result = net.Layers(end).ClassNames{idx}

result = 
'monitor'

Release any hardware resources associated with the dlhdl.Target objects.

release(hTargetJTAG)
release(hTargetEthernet)
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Create Series Network for Quantization

This example shows how to fine-tune a pretrained AlexNet convolutional neural network to perform
classification on a new collection of images.

AlexNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.

Load Training Data

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

unzip('logos_dataset.zip');

imds = imageDatastore('logos_dataset', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

Load Pretrained Network

Load the pretrained AlexNet neural network. If Deep Learning Toolbox™ Model for AlexNet Network
is not installed, then the software provides a download link. AlexNet is trained on more than one
million images and can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the model has learned rich feature representations for a wide range of
images.

snet = alexnet;

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed
information about the network layers.

analyzeNetwork(snet)
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The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = snet.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Replace Final Layers

The last three layers of the pretrained network net are configured for 1000 classes. These three
layers must be fine-tuned for the new classification problem. Extract all layers, except the last three,
from the pretrained network.

layersTransfer = snet.Layers(1:end-3);

Transfer the layers to the new classification task by replacing the last three layers with a fully
connected layer, a softmax layer, and a classification output layer. Specify the options of the new fully
connected layer according to the new data. Set the fully connected layer to have the same size as the
number of classes in the new data. To learn faster in the new layers than in the transferred layers,
increase the WeightLearnRateFactor and BiasLearnRateFactor values of the fully connected
layer.

numClasses = numel(categories(imdsTrain.Labels))

 Create Series Network for Quantization

10-91



numClasses = 32

layers = [
    layersTransfer
    fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)
    softmaxLayer
    classificationLayer];

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the fully connected layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',10, ...
    'MaxEpochs',6, ...
    'InitialLearnRate',1e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available (requires Parallel Computing Toolbox™ and a CUDA® enabled GPU with
compute capability 6.1, 6.3, or higher). Otherwise, it uses a CPU. You can also specify the execution
environment by using the 'ExecutionEnvironment' name-value pair argument of
trainingOptions.

netTransfer = trainNetwork(augimdsTrain,layers,options);
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Custom Deep Learning Processor Generation to Meet
Performance Requirements

This example shows how to create a custom processor configuration and estimate the performance of
a pretrained series network. You can then modify parameters of the custom processor configuration
and re-estimate the performance. Once you have achieved your performance requirements you can
generate a custom bitstream by using the custom processor configuration.

Prerequisites

• Deep Learning HDL Toolbox™Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox Model Quantization Library
• MATLAB Coder Interface for Deep Learning Libraries

Load Pretrained Series Network

To load the pretrained series network LogoNet, enter:

snet = getLogoNetwork;

Define Training and Validation Data Sets

This example uses the logos_dataset data set. The data set consists of 320 images. Create an
augmentedImageDatastore object to use for training and validation.

curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir,'f');

unzip('logos_dataset.zip');

imds = imageDatastore('logos_dataset', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

Create Custom Processor Configuration

To create a custom processor configuration, use the dlhdl.ProcessorConfig object. For more
information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the processor
configuration, see getModuleProperty and setModuleProperty.

hPC = dlhdl.ProcessorConfig;
hPC.TargetFrequency = 220;
hPC

hPC = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
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                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 220
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Estimate LogoNet Performance

To estimate the performance of the LogoNet series network, use the estimatePerformance
function of the dlhdl.ProcessorConfig object. The function returns the estimated layer latency,
network latency, and network performance in frames per second (Frames/s).

hPC.estimatePerformance(snet)

### Notice: The layer 'imageinput' of type 'ImageInputLayer' is split into an image input layer 'imageinput' and an addition layer 'imageinput_norm' for normalization on hardware.
### The network includes the following layers:
     1   'imageinput'    Image Input             227×227×3 images with 'zerocenter' normalization and 'randfliplr' augmentations  (SW Layer)
     2   'conv_1'        2-D Convolution         96 5×5×3 convolutions with stride [1  1] and padding [0  0  0  0]                (HW Layer)
     3   'relu_1'        ReLU                    ReLU                                                                             (HW Layer)
     4   'maxpool_1'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
     5   'conv_2'        2-D Convolution         128 3×3×96 convolutions with stride [1  1] and padding [0  0  0  0]              (HW Layer)
     6   'relu_2'        ReLU                    ReLU                                                                             (HW Layer)
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     7   'maxpool_2'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
     8   'conv_3'        2-D Convolution         384 3×3×128 convolutions with stride [1  1] and padding [0  0  0  0]             (HW Layer)
     9   'relu_3'        ReLU                    ReLU                                                                             (HW Layer)
    10   'maxpool_3'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
    11   'conv_4'        2-D Convolution         128 3×3×384 convolutions with stride [2  2] and padding [0  0  0  0]             (HW Layer)
    12   'relu_4'        ReLU                    ReLU                                                                             (HW Layer)
    13   'maxpool_4'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
    14   'fc_1'          Fully Connected         2048 fully connected layer                                                       (HW Layer)
    15   'relu_5'        ReLU                    ReLU                                                                             (HW Layer)
    16   'fc_2'          Fully Connected         2048 fully connected layer                                                       (HW Layer)
    17   'relu_6'        ReLU                    ReLU                                                                             (HW Layer)
    18   'fc_3'          Fully Connected         32 fully connected layer                                                         (HW Layer)
    19   'softmax'       Softmax                 softmax                                                                          (SW Layer)
    20   'classoutput'   Classification Output   crossentropyex with 'adidas' and 31 other classes                                (SW Layer)
                                                                                                                                
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   39199107                  0.17818                       1           39199107              5.6
    ____imageinput_norm     216472                  0.00098 
    ____conv_1             6832680                  0.03106 
    ____maxpool_1          3705912                  0.01685 
    ____conv_2            10454501                  0.04752 
    ____maxpool_2          1173810                  0.00534 
    ____conv_3             9364533                  0.04257 
    ____maxpool_3          1229970                  0.00559 
    ____conv_4             1759348                  0.00800 
    ____maxpool_4            24450                  0.00011 
    ____fc_1               2651288                  0.01205 
    ____fc_2               1696632                  0.00771 
    ____fc_3                 89511                  0.00041 
 * The clock frequency of the DL processor is: 220MHz

The estimated frames per second is 5.5 Frames/s. To improve the network performance, modify the
custom processor convolution module kernel data type, convolution processor thread number, fully
connected module kernel data type, and fully connected module thread number. For more information
about these processor parameters, see getModuleProperty and setModuleProperty.

Create Modified Custom Processor Configuration

To create a custom processor configuration, use the dlhdl.ProcessorConfig object. For more
information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the processor
configuration, see getModuleProperty and setModuleProperty.

hPCNew = dlhdl.ProcessorConfig;
hPCNew.TargetFrequency = 300;
hPCNew.ProcessorDataType = 'int8';
hPCNew.setModuleProperty('conv', 'ConvThreadNumber', 64);
hPCNew.setModuleProperty('fc', 'FCThreadNumber',   16);
hPCNew

hPCNew = 
                    Processing Module "conv"
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                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 64
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 16
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'int8'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 300
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Quantize LogoNet Series Network

To quantize the LogoNet network, enter:

imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
imageData_reduced = imageData.subset(1:20);
dlquantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');
dlquantObj.calibrate(imageData_reduced)
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Estimate LogoNet Performance

To estimate the performance of the LogoNet series network, use the estimatePerformance
function of the dlhdl.ProcessorConfig object. The function returns the estimated layer latency,
network latency, and network performance in frames per second (Frames/s).

hPCNew.estimatePerformance(dlquantObj)

### The network includes the following layers:
     1   'imageinput'    Image Input             227×227×3 images with 'zerocenter' normalization and 'randfliplr' augmentations  (SW Layer)
     2   'conv_1'        2-D Convolution         96 5×5×3 convolutions with stride [1  1] and padding [0  0  0  0]                (HW Layer)
     3   'relu_1'        ReLU                    ReLU                                                                             (HW Layer)
     4   'maxpool_1'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
     5   'conv_2'        2-D Convolution         128 3×3×96 convolutions with stride [1  1] and padding [0  0  0  0]              (HW Layer)
     6   'relu_2'        ReLU                    ReLU                                                                             (HW Layer)
     7   'maxpool_2'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
     8   'conv_3'        2-D Convolution         384 3×3×128 convolutions with stride [1  1] and padding [0  0  0  0]             (HW Layer)
     9   'relu_3'        ReLU                    ReLU                                                                             (HW Layer)
    10   'maxpool_3'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
    11   'conv_4'        2-D Convolution         128 3×3×384 convolutions with stride [2  2] and padding [0  0  0  0]             (HW Layer)
    12   'relu_4'        ReLU                    ReLU                                                                             (HW Layer)
    13   'maxpool_4'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
    14   'fc_1'          Fully Connected         2048 fully connected layer                                                       (HW Layer)
    15   'relu_5'        ReLU                    ReLU                                                                             (HW Layer)
    16   'fc_2'          Fully Connected         2048 fully connected layer                                                       (HW Layer)
    17   'relu_6'        ReLU                    ReLU                                                                             (HW Layer)
    18   'fc_3'          Fully Connected         32 fully connected layer                                                         (HW Layer)
    19   'softmax'       Softmax                 softmax                                                                          (SW Layer)
    20   'classoutput'   Classification Output   crossentropyex with 'adidas' and 31 other classes                                (SW Layer)
                                                                                                                                
### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13829465                  0.04610                       1           13829465             21.7
    ____conv_1             3487680                  0.01163 
    ____maxpool_1          1852092                  0.00617 
    ____conv_2             2939191                  0.00980 
    ____maxpool_2           586689                  0.00196 
    ____conv_3             2577951                  0.00859 
    ____maxpool_3           614769                  0.00205 
    ____conv_4              611644                  0.00204 
    ____maxpool_4            12201                  0.00004 
    ____fc_1                665265                  0.00222 
    ____fc_2                425425                  0.00142 
    ____fc_3                 56558                  0.00019 
 * The clock frequency of the DL processor is: 300MHz

The estimated frames per second is 21.7 Frames/s.
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Generate Custom Processor and Bitstream

Use the new custom processor configuration to build and generate a custom processor and bitstream.
Use the custom bitstream to deploy the LogoNet network to your target FPGA board.

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');
dlhdl.buildProcessor(hPCNew);

To learn how to use the generated bitstream file, see “Generate Custom Bitstream” on page 9-2.

The generated bitstream in this example is similar to the zcu102_int8 bitstream. To deploy the
quantized LogoNet network using the zcu102_int8 bitstream, see “Classify Images on an FPGA
Using a Quantized DAG Network” on page 10-154.
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Deploy Quantized Network Example

This example shows how to train, compile, and deploy a dlhdl.Workflow object that has quantized
ResNet-18 as the network object by using the Deep Learning HDL Toolbox™ Support Package for
Xilinx FPGA and SoC. Quantization helps reduce the memory requirement of a deep neural network
by quantizing weights, biases and activations of network layers to 8-bit scaled integer data types. Use
MATLAB® to retrieve the prediction results from the target device.

Required Products

For this example, you need:

• Deep Learning Toolbox ™
• Deep Learning HDL Toolbox ™
• Deep Learning Toolbox Model Quantization Library
• Deep Learning Toolbox Model for ResNet-18 Network
• Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices
• MATLAB Coder Interface for Deep Learning Libraries.

Load Pretrained DAG Network

To load the pretrained DAG network ResNet-18, enter:

net = resnet18;

To view the layers of the pretrained DAG network, enter:

analyzeNetwork(net);

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize;

inputSize = 1×3

227 227 3

Define Training and Validation Data Sets

This example uses the logos_dataset data set. The data set consists of 320 images. Create an
augmentedImageDatastore object to use for training and validation.

curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir,'f');

unzip('logos_dataset.zip');

imds = imageDatastore('logos_dataset', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
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Replace Final Layers

The last three layers of the pretrained network net are configured for 1000 classes. These three
layers must be fine-tuned for the new classification problem. Extract all the layers, except the last
three layers, from the pretrained network.

Extract the layer graph from the trained network.

lgraph = layerGraph(net)

lgraph = 
  LayerGraph with properties:

         Layers: [71×1 nnet.cnn.layer.Layer]
    Connections: [78×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

Remove 'fc1000', 'prob' and 'ClassificationLayer_predictions' layers from the lgraph.

layers = net.SortedLayers;
for i = 0:2
    lgraph = removeLayers(lgraph,layers(end-i).Name);
end

Transfer the layers to the new classification task by replacing the last three layers with a fully
connected layer, a softmax layer, and a classification output layer. Set the fully connected layer to
have the same size as the number of classes in the new data.

numClasses = numel(categories(imdsTrain.Labels));

numClasses = 32

Create three new layers and add them to the lgraph. Ensure the transferred and new layers are
properly connected together in the lgraph.

newLayers = [
    fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20,'Name','newFC')
    softmaxLayer('Name','newProb')
    classificationLayer('Name','newClassOutput',"Classes","auto")];

lgraph = addLayers(lgraph,newLayers);
lgraph = connectLayers(lgraph,layers(end-3).Name,'newFC');

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images, such as randomly
flipping the training images along the vertical axis and randomly translating them up to 30 pixels
horizontally and vertically. Data augmentation helps prevent the network from overfitting and
memorizing the exact details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
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    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',10, ...
    'MaxEpochs',6, ...
    'InitialLearnRate',1e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available (requires Parallel Computing Toolbox™ and a supported GPU device. For more
information, see “GPU Computing Requirements” (Parallel Computing Toolbox)). Otherwise, the
network uses a CPU (requires MATLAB Coder Interface for Deep learning Libraries™). You can also
specify the execution environment by using the 'ExecutionEnvironment' name-value argument of
trainingOptions.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);
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Create dlquantizer Object

Create a dlquantizer object and specify the network to quantize. Specify the execution
environment as FPGA.

dlQuantObj = dlquantizer(netTransfer,'ExecutionEnvironment','FPGA');

Calibrate Quantized Network

The dlquantizer object uses calibration data to collect dynamic ranges for the learnable
parameters of the convolution and fully connected layers of the network.

For best quantization results, the calibration data must be a representative of actual inputs predicted
by the LogoNet network. Expedite the calibration process by reducing the calibration data set to 20
images.

imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
imageData_reduced = imageData.subset(1:20);
dlQuantObj.calibrate(imageData_reduced)

ans=95×5 table
       Optimized Layer Name       Network Layer Name    Learnables / Activations    MinValue    MaxValue
    __________________________    __________________    ________________________    ________    ________

    {'conv1_Weights'         }    {'conv1'         }           "Weights"            -0.52595    0.83365 
    {'conv1_Bias'            }    {'conv1'         }           "Bias"               -0.66142    0.67493 
    {'res2a_branch2a_Weights'}    {'res2a_branch2a'}           "Weights"            -0.36239    0.42815 
    {'res2a_branch2a_Bias'   }    {'res2a_branch2a'}           "Bias"               -0.83058     1.1734 
    {'res2a_branch2b_Weights'}    {'res2a_branch2b'}           "Weights"            -0.80143    0.54724 
    {'res2a_branch2b_Bias'   }    {'res2a_branch2b'}           "Bias"                -1.2691     1.7777 
    {'res2b_branch2a_Weights'}    {'res2b_branch2a'}           "Weights"            -0.26073    0.25689 
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    {'res2b_branch2a_Bias'   }    {'res2b_branch2a'}           "Bias"                -1.0012     1.2976 
    {'res2b_branch2b_Weights'}    {'res2b_branch2b'}           "Weights"             -1.1361    0.77358 
    {'res2b_branch2b_Bias'   }    {'res2b_branch2b'}           "Bias"                -1.1981     1.1897 
    {'res3a_branch2a_Weights'}    {'res3a_branch2a'}           "Weights"            -0.13934    0.21123 
    {'res3a_branch2a_Bias'   }    {'res3a_branch2a'}           "Bias"               -0.54418    0.71134 
    {'res3a_branch2b_Weights'}    {'res3a_branch2b'}           "Weights"            -0.49925    0.69286 
    {'res3a_branch2b_Bias'   }    {'res3a_branch2b'}           "Bias"               -0.66837     1.4745 
    {'res3a_branch1_Weights' }    {'res3a_branch1' }           "Weights"            -0.63797    0.66549 
    {'res3a_branch1_Bias'    }    {'res3a_branch1' }           "Bias"                -1.0594    0.92627 
      ⋮

Create Target Object

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install
Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

To create the target object, enter:

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Alternatively, you can also use the JTAG interface.

% hTarget = dlhdl.Target('Xilinx', 'Interface', 'JTAG');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the class, an instance of the
dlquantizer object, the bitstream name, and the target information are specified. Specify
dlQuantObj as the network. Make sure that the bitstream name matches the data type and the
FPGA board that you are targeting. In this example, the target FPGA board is the Xilinx ZCU102 SOC
board and the bitstream uses the int8 data type.

hW = dlhdl.Workflow('Network', dlQuantObj, 'Bitstream', 'zcu102_int8','Target',hTarget);

Compile the Quantized DAGNetwork

To compile the quantized ResNet-18 DAG network, run the compile function of the dlhdl.Workflow
object.

dn = hW.compile

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_int8.
### The network includes the following layers:
     1   'data'                  Image Input                  224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                 Convolution                  64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'bn_conv1'              Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     4   'conv1_relu'            ReLU                         ReLU                                                                  (HW Layer)
     5   'pool1'                 Max Pooling                  3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     6   'res2a_branch2a'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     7   'bn2a_branch2a'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     8   'res2a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
     9   'res2a_branch2b'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    10   'bn2a_branch2b'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
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    11   'res2a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    12   'res2a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    13   'res2b_branch2a'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    14   'bn2b_branch2a'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    15   'res2b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    16   'res2b_branch2b'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    17   'bn2b_branch2b'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    18   'res2b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    19   'res2b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    20   'res3a_branch2a'        Convolution                  128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    21   'bn3a_branch2a'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    22   'res3a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    23   'res3a_branch2b'        Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'bn3a_branch2b'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    25   'res3a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    26   'res3a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    27   'res3a_branch1'         Convolution                  128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    28   'bn3a_branch1'          Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    29   'res3b_branch2a'        Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    30   'bn3b_branch2a'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    31   'res3b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    32   'res3b_branch2b'        Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'bn3b_branch2b'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    34   'res3b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    35   'res3b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    36   'res4a_branch2a'        Convolution                  256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    37   'bn4a_branch2a'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    38   'res4a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    39   'res4a_branch2b'        Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'bn4a_branch2b'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    41   'res4a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res4a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    43   'res4a_branch1'         Convolution                  256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    44   'bn4a_branch1'          Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    45   'res4b_branch2a'        Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'bn4b_branch2a'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    47   'res4b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    48   'res4b_branch2b'        Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    49   'bn4b_branch2b'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    50   'res4b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    51   'res4b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    52   'res5a_branch2a'        Convolution                  512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    53   'bn5a_branch2a'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    54   'res5a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    55   'res5a_branch2b'        Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    56   'bn5a_branch2b'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    57   'res5a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    58   'res5a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    59   'res5a_branch1'         Convolution                  512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    60   'bn5a_branch1'          Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    61   'res5b_branch2a'        Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    62   'bn5b_branch2a'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    63   'res5b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    64   'res5b_branch2b'        Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    65   'bn5b_branch2b'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    66   'res5b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    67   'res5b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    68   'pool5'                 2-D Global Average Pooling   2-D global average pooling                                            (HW Layer)
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    69   'newFC'                 Fully Connected              32 fully connected layer                                              (HW Layer)
    70   'newProb'               Softmax                      softmax                                                               (HW Layer)
    71   'newClassOutput'        Classification Output        crossentropyex with 'adidas' and 31 other classes                     (SW Layer)
                                                                                                                                  
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'newProb' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'newClassOutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: conv1>>pool1 ...
### Compiling layer group: conv1>>pool1 ... complete.
### Compiling layer group: res2a_branch2a>>res2a_branch2b ...
### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete.
### Compiling layer group: res2b_branch2a>>res2b_branch2b ...
### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete.
### Compiling layer group: res3a_branch1 ...
### Compiling layer group: res3a_branch1 ... complete.
### Compiling layer group: res3a_branch2a>>res3a_branch2b ...
### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete.
### Compiling layer group: res3b_branch2a>>res3b_branch2b ...
### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete.
### Compiling layer group: res4a_branch1 ...
### Compiling layer group: res4a_branch1 ... complete.
### Compiling layer group: res4a_branch2a>>res4a_branch2b ...
### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete.
### Compiling layer group: res4b_branch2a>>res4b_branch2b ...
### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete.
### Compiling layer group: res5a_branch1 ...
### Compiling layer group: res5a_branch1 ... complete.
### Compiling layer group: res5a_branch2a>>res5a_branch2b ...
### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete.
### Compiling layer group: res5b_branch2a>>res5b_branch2b ...
### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete.
### Compiling layer group: pool5 ...
### Compiling layer group: pool5 ... complete.
### Compiling layer group: newFC ...
### Compiling layer group: newFC ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "12.0 MB"       
    "OutputResultOffset"        "0x00c00000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x01000000"     "4.0 MB"        
    "SystemBufferOffset"        "0x01400000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03000000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x03400000"     "16.0 MB"       
    "FCWeightDataOffset"        "0x04400000"     "4.0 MB"        
    "EndOffset"                 "0x04800000"     "Total: 72.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
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        constantData: {}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 09-Dec-2021 18:36:39
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 09-Dec-2021 18:36:39

Load Example Images and Run the Prediction

To load the example image, execute the predict function of the dlhdl.Workflow object, and then
display the FPGA result, enter:

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    I = imresize(I,[224 224]);
    imshow(I)
    [prediction, speed] = hW.predict(single(I),'Profile','on');
    [val, index] = max(prediction);
    netTransfer.Layers(end).ClassNames{index}
    label = netTransfer.Layers(end).ClassNames{index}
    title(string(label));
end

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7335952                  0.02934                       1            7338581             34.1
    conv1                  1115480                  0.00446 
    pool1                   238029                  0.00095 
    res2a_branch2a          269834                  0.00108 
    res2a_branch2b          269956                  0.00108 
    res2a                    88905                  0.00036 
    res2b_branch2a          269794                  0.00108 
    res2b_branch2b          269965                  0.00108 
    res2b                    88783                  0.00036 
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    res3a_branch1           156139                  0.00062 
    res3a_branch2a          227324                  0.00091 
    res3a_branch2b          245055                  0.00098 
    res3a                    44462                  0.00018 
    res3b_branch2a          244852                  0.00098 
    res3b_branch2b          245048                  0.00098 
    res3b                    44426                  0.00018 
    res4a_branch1           135525                  0.00054 
    res4a_branch2a          136187                  0.00054 
    res4a_branch2b          237212                  0.00095 
    res4a                    22312                  0.00009 
    res4b_branch2a          236600                  0.00095 
    res4b_branch2b          237466                  0.00095 
    res4b                    22542                  0.00009 
    res5a_branch1           311891                  0.00125 
    res5a_branch2a          311873                  0.00125 
    res5a_branch2b          596194                  0.00238 
    res5a                    11201                  0.00004 
    res5b_branch2a          595857                  0.00238 
    res5b_branch2b          596713                  0.00239 
    res5b                    11431                  0.00005 
    pool5                    36976                  0.00015 
    newFC                    17733                  0.00007 
 * The clock frequency of the DL processor is: 250MHz

ans = 
'becks'

label = 
'becks'

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7336472                  0.02935                       1            7339005             34.1
    conv1                  1115736                  0.00446 
    pool1                   237938                  0.00095 
    res2a_branch2a          269787                  0.00108 
    res2a_branch2b          270062                  0.00108 
    res2a                    88865                  0.00036 
    res2b_branch2a          269710                  0.00108 
    res2b_branch2b          269870                  0.00108 
    res2b                    88975                  0.00036 
    res3a_branch1           156178                  0.00062 
    res3a_branch2a          227565                  0.00091 
    res3a_branch2b          245130                  0.00098 
    res3a                    44486                  0.00018 
    res3b_branch2a          244733                  0.00098 
    res3b_branch2b          244875                  0.00098 
    res3b                    44486                  0.00018 
    res4a_branch1           135725                  0.00054 
    res4a_branch2a          136247                  0.00054 
    res4a_branch2b          236972                  0.00095 
    res4a                    22382                  0.00009 
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    res4b_branch2a          236891                  0.00095 
    res4b_branch2b          237046                  0.00095 
    res4b                    22402                  0.00009 
    res5a_branch1           312061                  0.00125 
    res5a_branch2a          311738                  0.00125 
    res5a_branch2b          596238                  0.00238 
    res5a                    11261                  0.00005 
    res5b_branch2a          595867                  0.00238 
    res5b_branch2b          596768                  0.00239 
    res5b                    11351                  0.00005 
    pool5                    36999                  0.00015 
    newFC                    17941                  0.00007 
 * The clock frequency of the DL processor is: 250MHz

ans = 
'nvidia'

label = 
'nvidia'

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7335649                  0.02934                       1            7338257             34.1
    conv1                  1115615                  0.00446 
    pool1                   237521                  0.00095 
    res2a_branch2a          269761                  0.00108 
    res2a_branch2b          270039                  0.00108 
    res2a                    88844                  0.00036 
    res2b_branch2a          269603                  0.00108 
    res2b_branch2b          269901                  0.00108 
    res2b                    88855                  0.00036 
    res3a_branch1           156360                  0.00063 
    res3a_branch2a          227646                  0.00091 
    res3a_branch2b          245061                  0.00098 
    res3a                    44526                  0.00018 
    res3b_branch2a          244836                  0.00098 
    res3b_branch2b          244944                  0.00098 
    res3b                    44566                  0.00018 
    res4a_branch1           135820                  0.00054 
    res4a_branch2a          136251                  0.00055 
    res4a_branch2b          236828                  0.00095 
    res4a                    22352                  0.00009 
    res4b_branch2a          237023                  0.00095 
    res4b_branch2b          236932                  0.00095 
    res4b                    22392                  0.00009 
    res5a_branch1           311901                  0.00125 
    res5a_branch2a          311751                  0.00125 
    res5a_branch2b          596252                  0.00239 
    res5a                    11281                  0.00005 
    res5b_branch2a          595829                  0.00238 
    res5b_branch2b          596743                  0.00239 
    res5b                    11249                  0.00004 
    pool5                    36913                  0.00015 
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    newFC                    17867                  0.00007 
 * The clock frequency of the DL processor is: 250MHz

ans = 
'google'

label = 
'google'

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7336269                  0.02935                       1            7338849             34.1
    conv1                  1115457                  0.00446 
    pool1                   238045                  0.00095 
    res2a_branch2a          269786                  0.00108 
    res2a_branch2b          269928                  0.00108 
    res2a                    88895                  0.00036 
    res2b_branch2a          269765                  0.00108 
    res2b_branch2b          269928                  0.00108 
    res2b                    88825                  0.00036 
    res3a_branch1           156232                  0.00062 
    res3a_branch2a          227320                  0.00091 
    res3a_branch2b          245058                  0.00098 
    res3a                    44493                  0.00018 
    res3b_branch2a          244799                  0.00098 
    res3b_branch2b          245040                  0.00098 
    res3b                    44456                  0.00018 
    res4a_branch1           135640                  0.00054 
    res4a_branch2a          136131                  0.00054 
    res4a_branch2b          237165                  0.00095 
    res4a                    22312                  0.00009 
    res4b_branch2a          236583                  0.00095 
    res4b_branch2b          237521                  0.00095 
    res4b                    22512                  0.00009 
    res5a_branch1           311839                  0.00125 
    res5a_branch2a          311902                  0.00125 
    res5a_branch2b          596212                  0.00238 
    res5a                    11211                  0.00004 
    res5b_branch2a          595898                  0.00238 
    res5b_branch2b          596808                  0.00239 
    res5b                    11381                  0.00005 
    pool5                    36989                  0.00015 
    newFC                    17951                  0.00007 
 * The clock frequency of the DL processor is: 250MHz

ans = 
'shell'

label = 
'shell'
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See Also

• dlquantizer
• calibrate
• dlhdl.Workflow
• “Quantization of Deep Neural Networks” on page 11-2
• “Prototype Deep Learning Networks on FPGA and SoC Devices” on page 5-2
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Deploy INT8 Network to FPGA

This example was previously named 'Quantize Network for FPGA Deployment'.

Reduce the memory footprint of a deep neural network by quantizing the weights, biases, and
activations of convolution layers to 8-bit scaled integer data types. This example shows how to use
Deep Learning Toolbox Model Quantization Library and Deep Learning HDL Toolbox to deploy the
int8 network to a target FPGA board.

For this example, you need:

• Deep Learning Toolbox ™
• Deep Learning HDL Toolbox ™
• Deep Learning Toolbox Model Quantization Library
• Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices
• MATLAB Coder Interface for Deep Learning Libraries.

Load Pretrained Network

Load the pretrained LogoNet network and analyze the network architecture.

snet = getLogoNetwork;
analyzeNetwork(snet);
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Load Data

This example uses the logos_dataset data set. The data set consists of 320 images. Each image is 227-
by-227 in size and has three color channels (RGB). Create an augmentedImageDatastore object for
calibration and validation. Expedite calibration and validation by reducing the calibration data set to
20 images. The MATLAB simulation workflow has a maximum limit of five images when validating the
quantized network. Reduce the validation data set sizes to five images. The FPGA validation workflow
has a maximum limit of one image when validating the quantized network. Reduce the FPGA
validation data set to a single image.

curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir,'f');
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');
calibrationData_reduced = calibrationData.subset(1:20);
validationData_simulation = validationData.subset(1:5);
validationData_FPGA = validationData.subset(1:1);

Generate Calibration Result File for the Network

Create a dlquantizer object and specify the network to quantize. Specify the execution
environment as FPGA.

dlQuantObj_simulation = dlquantizer(snet,'ExecutionEnvironment',"FPGA",'Simulation','on');
dlQuantObj_FPGA = dlquantizer(snet,'ExecutionEnvironment',"FPGA");

Use the calibrate function to exercise the network with sample inputs and collect the range
information. The calibrate function collects the dynamic ranges of the weights and biases. The
calibrate function returns a table. Each row of the table contains range information for a learnable
parameter of the quantized network.

calibrate(dlQuantObj_simulation,calibrationData_reduced)

ans=35×5 table
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        193.72
      ⋮
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calibrate(dlQuantObj_FPGA,calibrationData_reduced)

ans=35×5 table
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        193.72
      ⋮

Create Target Object

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install
Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado
\2020.2\bin\vivado.bat');

To create the target object, enter:

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Alternatively, you can also use the JTAG interface.

% hTarget = dlhdl.Target('Xilinx', 'Interface', 'JTAG');

Create dlQuantizationOptions Object

Create a dlquantizationOptions object. Specify the target bitstream and target board interface.
The default metric function is a Top-1 accuracy metric function.

options_FPGA = dlquantizationOptions('Bitstream','zcu102_int8','Target',hTarget);
options_simulation = dlquantizationOptions;

To use a custom metric function, specify the metric function in the dlquantizationOptions
object.

% options_FPGA = dlquantizationOptions('MetricFcn',{@(x)hComputeAccuracy(x, snet, validationData_FPGA)},'Bitstream','zcu102_int8','Target',hTarget);
% options_simulation = dlquantizationOptions('MetricFcn',{@(x)hComputeAccuracy(x, snet,validationData_simulation)})

Validate Quantized Network

Use the validate function to quantize the learnable parameters in the convolution layers of the
network. The validate function simulates the quantized network in MATLAB. The validate
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function uses the metric function defined in the dlquantizationOptions object to compare the
results of the single data type network object to the results of the quantized network object.

prediction_simulation = dlQuantObj_simulation.validate(validationData_simulation,options_simulation)

Compiling leg: conv_1>>relu_4 ...
Compiling leg: conv_1>>relu_4 ... complete.
Compiling leg: maxpool_4 ...
Compiling leg: maxpool_4 ... complete.
Compiling leg: fc_1>>fc_3 ...
Compiling leg: fc_1>>fc_3 ... complete.

prediction_simulation = struct with fields:
       NumSamples: 5
    MetricResults: [1×1 struct]
       Statistics: []

For an FPGA based validation, The validate function uses the output of the compile function to
program the FPGA board by using the programming file. It also downloads the network weights and
biases. The validate function uses the metric function defined in the dlquantizationOptions
object to compare the results of the network before and after quantization.

prediction_FPGA = dlQuantObj_FPGA.validate(validationData_FPGA,options_FPGA)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_int8.
### The network includes the following layers:
     1   'imageinput'    Image Input             227×227×3 images with 'zerocenter' normalization and 'randfliplr' augmentations  (SW Layer)
     2   'conv_1'        Convolution             96 5×5×3 convolutions with stride [1  1] and padding [0  0  0  0]                (HW Layer)
     3   'relu_1'        ReLU                    ReLU                                                                             (HW Layer)
     4   'maxpool_1'     Max Pooling             3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
     5   'conv_2'        Convolution             128 3×3×96 convolutions with stride [1  1] and padding [0  0  0  0]              (HW Layer)
     6   'relu_2'        ReLU                    ReLU                                                                             (HW Layer)
     7   'maxpool_2'     Max Pooling             3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
     8   'conv_3'        Convolution             384 3×3×128 convolutions with stride [1  1] and padding [0  0  0  0]             (HW Layer)
     9   'relu_3'        ReLU                    ReLU                                                                             (HW Layer)
    10   'maxpool_3'     Max Pooling             3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
    11   'conv_4'        Convolution             128 3×3×384 convolutions with stride [2  2] and padding [0  0  0  0]             (HW Layer)
    12   'relu_4'        ReLU                    ReLU                                                                             (HW Layer)
    13   'maxpool_4'     Max Pooling             3×3 max pooling with stride [2  2] and padding [0  0  0  0]                      (HW Layer)
    14   'fc_1'          Fully Connected         2048 fully connected layer                                                       (HW Layer)
    15   'relu_5'        ReLU                    ReLU                                                                             (HW Layer)
    16   'dropout_1'     Dropout                 50% dropout                                                                      (HW Layer)
    17   'fc_2'          Fully Connected         2048 fully connected layer                                                       (HW Layer)
    18   'relu_6'        ReLU                    ReLU                                                                             (HW Layer)
    19   'dropout_2'     Dropout                 50% dropout                                                                      (HW Layer)
    20   'fc_3'          Fully Connected         32 fully connected layer                                                         (HW Layer)
    21   'softmax'       Softmax                 softmax                                                                          (HW Layer)
    22   'classoutput'   Classification Output   crossentropyex with 'adidas' and 31 other classes                                (SW Layer)
                                                                                                                                
### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: conv_1>>relu_4 ...
### Compiling layer group: conv_1>>relu_4 ... complete.
### Compiling layer group: maxpool_4 ...
### Compiling layer group: maxpool_4 ... complete.

 Deploy INT8 Network to FPGA

10-115



### Compiling layer group: fc_1>>fc_3 ...
### Compiling layer group: fc_1>>fc_3 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "12.0 MB"       
    "OutputResultOffset"        "0x00c00000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x01000000"     "4.0 MB"        
    "SystemBufferOffset"        "0x01400000"     "36.0 MB"       
    "InstructionDataOffset"     "0x03800000"     "8.0 MB"        
    "ConvWeightDataOffset"      "0x04000000"     "12.0 MB"       
    "FCWeightDataOffset"        "0x04c00000"     "12.0 MB"       
    "EndOffset"                 "0x05800000"     "Total: 88.0 MB"

### Network compilation complete.

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Bitstream Build Info

Resource                   Utilized           Total        Percentage
------------------        ----------      ------------    ------------
LUTs (CLB/ALM)*              248358            274080           90.62
DSPs                            384              2520           15.24
Block RAM                       581               912           63.71
* LUT count represents Configurable Logic Block(CLB) utilization in Xilinx devices and Adaptive Logic Module (ALM) utilization in Intel devices.

### Notice: The layer 'imageinput' of type 'ImageInputLayer' is split into an image input layer 'imageinput' and an addition layer 'imageinput_norm' for normalization on hardware.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   40142478                  0.18247                       1           40142478              5.5
    ____imageinput_norm     216472                  0.00098 
    ____conv_1             6825671                  0.03103 
    ____maxpool_1          3755088                  0.01707 
    ____conv_2            10440701                  0.04746 
    ____maxpool_2          1447840                  0.00658 
    ____conv_3             9405685                  0.04275 
    ____maxpool_3          1765856                  0.00803 
    ____conv_4             1819636                  0.00827 
    ____maxpool_4            28098                  0.00013 
    ____fc_1               2651288                  0.01205 
    ____fc_2               1696632                  0.00771 
    ____fc_3                 89511                  0.00041 
 * The clock frequency of the DL processor is: 220MHz
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              Deep Learning Processor Bitstream Build Info

Resource                   Utilized           Total        Percentage
------------------        ----------      ------------    ------------
LUTs (CLB/ALM)*              168645            274080           61.53
DSPs                            800              2520           31.75
Block RAM                       453               912           49.67
* LUT count represents Configurable Logic Block(CLB) utilization in Xilinx devices and Adaptive Logic Module (ALM) utilization in Intel devices.

### Finished writing input activations.
### Running single input activation.

prediction_FPGA = struct with fields:
       NumSamples: 1
    MetricResults: [1×1 struct]
       Statistics: [2×7 table]

View Performance of Quantized Neural Network

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

prediction_simulation.MetricResults.Result

ans=2×2 table
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}           1      
     {'Quantized'     }           1      

prediction_FPGA.MetricResults.Result

ans=2×2 table
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}           1      
     {'Quantized'     }           1      

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction_FPGA.Statistics.FramesPerSecond(2)

ans = 19.0828

See Also

• dlquantizer
• calibrate
• validate
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• dlquantizationOptions
• “Quantization of Deep Neural Networks” on page 11-2
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Evaluate Performance of Deep Learning Network on Custom
Processor Configuration

Benchmark the performance of a deep learning network on a custom bitstream configuration by
comparing it to the performance on a reference (shipping) bitstream configuration. Use the
comparison results to adjust your custom deep learning processor parameters to achieve optimum
performance.

In this example compare the performance of the ResNet-18 network on the zcu102_single
bitstream configuration to the performance on the default custom bitstream configuration.

Prerequisites

• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox Model for ResNet-18 Network

Load Pretrained Network

Load the pretrained network.

snet = resnet18;

Retrieve zcu102_single Bitstream Configuration

To retrieve the zcu102_single bitstream configuration, use the dlhdl.ProcessorConfig object.
For more information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the
processor configuration, see getModuleProperty and setModuleProperty.

hPC_shipping = dlhdl.ProcessorConfig('Bitstream',"zcu102_single")

hPC_shipping = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                   Processing Module "adder"
                            ModuleGeneration: 'on'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
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                              RunTimeControl: 'register'
                          InputDataInterface: 'External Memory'
                         OutputDataInterface: 'External Memory'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 220
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Estimate ResNet-18 Performance for zcu102_single Bitstream Configuration

To estimate the performance of the ResNet-18 DAG network, use the estimatePerformance
function of the dlhdl.ProcessorConfig object. The function returns the estimated layer latency,
network latency, and network performance in frames per second (Frames/s).

hPC_shipping.estimatePerformance(snet)

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   23634966                  0.10743                       1           23634966              9.3
    ____conv1              2165372                  0.00984 
    ____pool1               646226                  0.00294 
    ____res2a_branch2a      966221                  0.00439 
    ____res2a_branch2b      966221                  0.00439 
    ____res2a               210750                  0.00096 
    ____res2b_branch2a      966221                  0.00439 
    ____res2b_branch2b      966221                  0.00439 
    ____res2b               210750                  0.00096 
    ____res3a_branch1       540749                  0.00246 
    ____res3a_branch2a      763860                  0.00347 
    ____res3a_branch2b      919117                  0.00418 
    ____res3a               105404                  0.00048 
    ____res3b_branch2a      919117                  0.00418 
    ____res3b_branch2b      919117                  0.00418 
    ____res3b               105404                  0.00048 
    ____res4a_branch1       509261                  0.00231 
    ____res4a_branch2a      509261                  0.00231 
    ____res4a_branch2b      905421                  0.00412 
    ____res4a                52724                  0.00024 
    ____res4b_branch2a      905421                  0.00412 
    ____res4b_branch2b      905421                  0.00412 
    ____res4b                52724                  0.00024 
    ____res5a_branch1      1046605                  0.00476 
    ____res5a_branch2a     1046605                  0.00476 
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    ____res5a_branch2b     2005197                  0.00911 
    ____res5a                26368                  0.00012 
    ____res5b_branch2a     2005197                  0.00911 
    ____res5b_branch2b     2005197                  0.00911 
    ____res5b                26368                  0.00012 
    ____pool5                54594                  0.00025 
    ____fc1000              207852                  0.00094 
 * The clock frequency of the DL processor is: 220MHz

Create Custom Processor Configuration

To create a custom processor configuration, use the dlhdl.ProcessorConfig object. For more
information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the processor
configuration, see getModuleProperty and setModuleProperty.

hPC_custom = dlhdl.ProcessorConfig

hPC_custom = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                   Processing Module "adder"
                            ModuleGeneration: 'on'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
                              RunTimeControl: 'register'
                          InputDataInterface: 'External Memory'
                         OutputDataInterface: 'External Memory'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''
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Estimate ResNet-18 Performance for Custom Bitstream Configuration

To estimate the performance of the ResNet-18 DAG network, use the estimatePerformance
function of the dlhdl.ProcessorConfig object. The function returns the estimated layer latency,
network latency, and network performance in frames per second (Frames/s).

hPC_custom.estimatePerformance(snet)

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   21219873                  0.10610                       1           21219873              9.4
    ____conv1              2165372                  0.01083 
    ____pool1               646226                  0.00323 
    ____res2a_branch2a      966221                  0.00483 
    ____res2a_branch2b      966221                  0.00483 
    ____res2a               210750                  0.00105 
    ____res2b_branch2a      966221                  0.00483 
    ____res2b_branch2b      966221                  0.00483 
    ____res2b               210750                  0.00105 
    ____res3a_branch1       540749                  0.00270 
    ____res3a_branch2a      708564                  0.00354 
    ____res3a_branch2b      919117                  0.00460 
    ____res3a               105404                  0.00053 
    ____res3b_branch2a      919117                  0.00460 
    ____res3b_branch2b      919117                  0.00460 
    ____res3b               105404                  0.00053 
    ____res4a_branch1       509261                  0.00255 
    ____res4a_branch2a      509261                  0.00255 
    ____res4a_branch2b      905421                  0.00453 
    ____res4a                52724                  0.00026 
    ____res4b_branch2a      905421                  0.00453 
    ____res4b_branch2b      905421                  0.00453 
    ____res4b                52724                  0.00026 
    ____res5a_branch1       751693                  0.00376 
    ____res5a_branch2a      751693                  0.00376 
    ____res5a_branch2b     1415373                  0.00708 
    ____res5a                26368                  0.00013 
    ____res5b_branch2a     1415373                  0.00708 
    ____res5b_branch2b     1415373                  0.00708 
    ____res5b                26368                  0.00013 
    ____pool5                54594                  0.00027 
    ____fc1000              207351                  0.00104 
 * The clock frequency of the DL processor is: 200MHz

The performance of the ResNet-18 network on the custom bitstream configuration is lower than the
performance on the zcu102_single bitstream configuration. The difference between the custom
bitstream configuration and the zcu102_single bitstream configuration is the target frequency.
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Modify Custom Processor Configuration

Modify the custom processor configuration to increase the target frequency. To learn about
modifiable parameters of the processor configuration, see dlhdl.ProcessorConfig.

hPC_custom.TargetFrequency = 220;
hPC_custom

hPC_custom = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                   Processing Module "adder"
                            ModuleGeneration: 'on'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
                              RunTimeControl: 'register'
                          InputDataInterface: 'External Memory'
                         OutputDataInterface: 'External Memory'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 220
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Re-estimate ResNet-18 Performance for Modified Custom Bitstream Configuration

Estimate the performance of the ResNet-18 DAG network on the modified custom bitstream
configuration.

hPC_custom.estimatePerformance(snet)

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
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              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   23634966                  0.10743                       1           23634966              9.3
    ____conv1              2165372                  0.00984 
    ____pool1               646226                  0.00294 
    ____res2a_branch2a      966221                  0.00439 
    ____res2a_branch2b      966221                  0.00439 
    ____res2a               210750                  0.00096 
    ____res2b_branch2a      966221                  0.00439 
    ____res2b_branch2b      966221                  0.00439 
    ____res2b               210750                  0.00096 
    ____res3a_branch1       540749                  0.00246 
    ____res3a_branch2a      763860                  0.00347 
    ____res3a_branch2b      919117                  0.00418 
    ____res3a               105404                  0.00048 
    ____res3b_branch2a      919117                  0.00418 
    ____res3b_branch2b      919117                  0.00418 
    ____res3b               105404                  0.00048 
    ____res4a_branch1       509261                  0.00231 
    ____res4a_branch2a      509261                  0.00231 
    ____res4a_branch2b      905421                  0.00412 
    ____res4a                52724                  0.00024 
    ____res4b_branch2a      905421                  0.00412 
    ____res4b_branch2b      905421                  0.00412 
    ____res4b                52724                  0.00024 
    ____res5a_branch1      1046605                  0.00476 
    ____res5a_branch2a     1046605                  0.00476 
    ____res5a_branch2b     2005197                  0.00911 
    ____res5a                26368                  0.00012 
    ____res5b_branch2a     2005197                  0.00911 
    ____res5b_branch2b     2005197                  0.00911 
    ____res5b                26368                  0.00012 
    ____pool5                54594                  0.00025 
    ____fc1000              207852                  0.00094 
 * The clock frequency of the DL processor is: 220MHz
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Customize Bitstream Configuration to Meet Resource Use
Requirements

The user wants to deploy a digit recognition network with a target performance of 500 frames per
second (FPS) to a Xilinx™ ZCU102 ZU4CG device. The target device resource counts are:

• Digital signal processor (DSP) slice count - 240
• Block random access memory (BRAM) count -128

The reference (shipping) zcu102_int8 bitstream configuration is for a Xilinx ZCU102 ZU9EG
device. The default board resource counts are:

• Digital signal processor (DSP) slice count - 2520
• Block random access memory (BRAM) count -912

The default board resource counts exceed the user resource budget and is on the higher end of the
cost spectrum. You can achieve target performance and resource use budget by quantizing the target
deep learning network and customizing the custom default bitstream configuration.

In this example create a custom bitstream configuration to match your resource budget and
performance requirements.

Prerequisites

• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox Model Quantization Library

Load Pretrained Network

To load the pretrained series network, that has been trained on the Modified National Institute
Standards of Technology (MNIST) database, enter:

snet = getDigitsNetwork;

Quantize Network

To quantize the MNIST based digits network, enter:

dlquantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');
Image = imageDatastore('five_28x28.pgm','Labels','five');
dlquantObj.calibrate(Image);

Retrieve zcu102_int Bitstream Configuration

To retrieve the zcu102_int8 bitstream configuration, use the dlhdl.ProcessorConfig object.
For more information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the
processor configuration, see getModuleProperty and setModuleProperty.

hPC_reference = dlhdl.ProcessorConfig('Bitstream','zcu102_int8')

hPC_reference = 
                    Processing Module "conv"
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                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 64
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 16
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'int8'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 250
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Estimate Network Performance and Resource Utilization for zcu102_int8 Bitstream
Configuration

To estimate the performance of the digits series network, use the estimatePerformance function of
the dlhdl.ProcessorConfig object. The function returns the estimated layer latency, network
latency, and network performance in frames per second (Frames/s).

To estimate the resource use of the zcu102_int8 bitstream, use the estimateResources
function of the dlhdl.ProcessorConfig object. The function returns the estimated DSP slice and
BRAM usage.

hPC_reference.estimatePerformance(dlquantObj)
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### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### The network includes the following layers:
     1   'imageinput'    Image Input             28×28×1 images with 'zerocenter' normalization                (SW Layer)
     2   'conv_1'        Convolution             8 3×3×1 convolutions with stride [1  1] and padding 'same'    (HW Layer)
     3   'relu_1'        ReLU                    ReLU                                                          (HW Layer)
     4   'maxpool_1'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     5   'conv_2'        Convolution             16 3×3×8 convolutions with stride [1  1] and padding 'same'   (HW Layer)
     6   'relu_2'        ReLU                    ReLU                                                          (HW Layer)
     7   'maxpool_2'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     8   'conv_3'        Convolution             32 3×3×16 convolutions with stride [1  1] and padding 'same'  (HW Layer)
     9   'relu_3'        ReLU                    ReLU                                                          (HW Layer)
    10   'fc'            Fully Connected         10 fully connected layer                                      (HW Layer)
    11   'softmax'       Softmax                 softmax                                                       (SW Layer)
    12   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes                   (SW Layer)
                                                                                                             
### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      58101                  0.00023                       1              58101           4302.9
    ____conv_1                4391                  0.00002 
    ____maxpool_1             2877                  0.00001 
    ____conv_2                2351                  0.00001 
    ____maxpool_2             2265                  0.00001 
    ____conv_3                2651                  0.00001 
    ____fc                   43566                  0.00017 
 * The clock frequency of the DL processor is: 250MHz

hPC_reference.estimateResources

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                797( 32%)        386( 43%)     142494( 52%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

The estimated performance is 4303 FPS and the estimated resource use counts are:

• Digital signal processor (DSP) slice count - 797
• Block random access memory (BRAM) count -386

The estimated DSP slice count and BRAM count use exceeds the target device resource budget.
Customize the bitstream configuration to reduce resource use.

Create Custom Bitstream Configuration

To create a custom processor configuration, use the dlhdl.ProcessorConfig object. For more
information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the processor
configuration, see getModuleProperty and setModuleProperty.
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To reduce the resource use for the custom bitstream, modify the KernelDataType for the conv,
fc, and adder modules. Modify the ConvThreadNumber to reduce DSP slice count. Reduce the
InputMemorySize and OutputMemorySize for the conv module to reduce BRAM count.

hPC_custom = dlhdl.ProcessorConfig;
hPC_custom.ProcessorDataType = 'int8';
hPC_custom.setModuleProperty('conv','ConvThreadNumber',4);
hPC_custom.setModuleProperty('conv','InputMemorySize',[30 30 1]);
hPC_custom.setModuleProperty('conv','OutputMemorySize',[30 30 1]);
hPC_custom

hPC_custom = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 4
                             InputMemorySize: [30 30 1]
                            OutputMemorySize: [30 30 1]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'int8'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''
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Estimate Network Performance and Resource Utilization for Custom Bitstream
Configuration

To estimate the performance of the digits series network, use the estimatePerformance function of
the dlhdl.ProcessorConfig object. The function returns the estimated layer latency, network
latency, and network performance in frames per second (Frames/s).

To estimate the resource use of the hPC_custom bitstream, use the estimateResources
function of the dlhdl.ProcessorConfig object. The function returns the estimated DSP slice and
BRAM usage.

hPC_custom.estimatePerformance(dlquantObj)

### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### The network includes the following layers:
     1   'imageinput'    Image Input             28×28×1 images with 'zerocenter' normalization                (SW Layer)
     2   'conv_1'        Convolution             8 3×3×1 convolutions with stride [1  1] and padding 'same'    (HW Layer)
     3   'relu_1'        ReLU                    ReLU                                                          (HW Layer)
     4   'maxpool_1'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     5   'conv_2'        Convolution             16 3×3×8 convolutions with stride [1  1] and padding 'same'   (HW Layer)
     6   'relu_2'        ReLU                    ReLU                                                          (HW Layer)
     7   'maxpool_2'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     8   'conv_3'        Convolution             32 3×3×16 convolutions with stride [1  1] and padding 'same'  (HW Layer)
     9   'relu_3'        ReLU                    ReLU                                                          (HW Layer)
    10   'fc'            Fully Connected         10 fully connected layer                                      (HW Layer)
    11   'softmax'       Softmax                 softmax                                                       (SW Layer)
    12   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes                   (SW Layer)
                                                                                                             
### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                     433577                  0.00217                       1             433577            461.3
    ____conv_1               26160                  0.00013 
    ____maxpool_1            31888                  0.00016 
    ____conv_2               44736                  0.00022 
    ____maxpool_2            22337                  0.00011 
    ____conv_3              265045                  0.00133 
    ____fc                   43411                  0.00022 
 * The clock frequency of the DL processor is: 200MHz

hPC_custom.estimateResources

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                131(  6%)        108( 12%)      56270( 21%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

The estimated performance is 461.3 FPS and the estimated resource use counts are:
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• Digital signal processor (DSP) slice count - 131
• Block random access memory (BRAM) count -108

The estimated resources of the customized bitstream match the user target device resource budget
and the estimated performance matches the target network performance.
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Vehicle Detection Using DAG Network Based YOLO v2 Deployed
to FPGA

This example shows how to train and deploy a you only look once (YOLO) v2 object detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several techniques for object detection exist, including Faster R-CNN and you only look
once (YOLO) v2. This example trains a YOLO v2 vehicle detector using the
trainYOLOv2ObjectDetector function.

Load Dataset

This example uses a small vehicle dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 data sets, available at the Caltech Computational Vision website,
created by Pietro Perona and used with permission. Each image contains one or two labeled instances
of a vehicle. A small dataset is useful for exploring the YOLO v2 training procedure, but in practice,
more labeled images are needed to train a robust detector. The data set is attached to the example.
Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

% Add the fullpath to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

Split the dataset into training and test sets. Select 60% of the data for training and the rest for
testing the trained detector.

rng(0);
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices) );
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx),:);
testDataTbl = vehicleDataset(shuffledIndices(idx+1:end),:);

Use imageDatastore and boxLabelDataStore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest,bldsTest);

Create a YOLO v2 Object Detection Network

A YOLO v2 object detection network is composed of two subnetworks. A feature extraction network
followed by a detection network. The feature extraction network is typically a pretrained CNN (for
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details, see “Pretrained Deep Neural Networks”). This example uses ResNet-18 for feature extraction.
You can also use other pretrained networks such as MobileNet v2 or ResNet-50 depending on
application requirements. The detection sub-network is a small CNN compared to the feature
extraction network and is composed of a few convolutional layers and layers specific for YOLO v2.

Use the yolov2Layers (Computer Vision Toolbox) function to create a YOLO v2 object detection
network automatically given a pretrained ResNet-18 feature extraction network. yolov2Layers
requires you to specify several inputs that parameterize a YOLO v2 network:

• Network input size
• Anchor boxes
• Feature extraction network

First, specify the network input size and the number of classes. When choosing the network input
size, consider the minimum size required by the network itself, the size of the training images, and
the computational cost incurred by processing data at the selected size. When feasible, choose a
network input size that is close to the size of the training image and larger than the input size
required for the network. To reduce the computational cost of running the example, specify a network
input size of [224 224 3], which is the minimum size required to run the network.

inputSize = [224 224 3];

Define the number of object classes to detect.

numClasses = width(vehicleDataset)-1;

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes (Computer Vision Toolbox) to estimate anchor boxes based on the
size of objects in the training data. To account for the resizing of the images prior to training, resize
the training data for estimating anchor boxes. Use transform to preprocess the training data, then
define the number of anchor boxes and estimate the anchor boxes. Resize the training data to the
input image size of the network using the supporting function yolo_preprocessData.

trainingDataForEstimation = transform(trainingData,@(data)yolo_preprocessData(data,inputSize));
numAnchors = 7;
[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)

anchorBoxes = 7×2

   145   126
    91    86
   161   132
    41    34
    67    64
   136   111
    33    23

meanIoU = 0.8651

For more information on choosing anchor boxes, see “Estimate Anchor Boxes From Training Data”
(Computer Vision Toolbox) (Computer Vision Toolbox) (Computer Vision Toolbox™) and “Anchor Boxes
for Object Detection” (Computer Vision Toolbox) (Computer Vision Toolbox).
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Now, use resnet18 to load a pretrained ResNet-18 model.

featureExtractionNetwork = resnet18;

Select 'res4b_relu' as the feature extraction layer to replace the layers after 'res4b_relu' with
the detection subnetwork. This feature extraction layer outputs feature maps that are downsampled
by a factor of 16. This amount of downsampling is a good trade-off between spatial resolution and the
strength of the extracted features, as features extracted further down the network encode stronger
image features at the cost of spatial resolution. Choosing the optimal feature extraction layer
requires empirical analysis.

featureLayer = 'res4b_relu';

Create the YOLO v2 object detection network. .

lgraph = yolov2Layers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

If more control is required over the YOLO v2 network architecture, use Deep Network Designer to
design the YOLO v2 detection network manually. For more information, see “Design a YOLO v2
Detection Network” (Computer Vision Toolbox) (Computer Vision Toolbox).

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to the test and validation data. Ideally,
test and validation data should be representative of the original data and is left unmodified for
unbiased evaluation.

augmentedTrainingData = transform(trainingData,@yolo_augmentData);

Preprocess Training Data and Train YOLO v2 Object Detector

Preprocess the augmented training data, and the validation data to prepare for training.

preprocessedTrainingData = transform(augmentedTrainingData,@(data)yolo_preprocessData(data,inputSize));

Use trainingOptions to specify network training options. Set 'ValidationData' to the
preprocessed validation data. Set 'CheckpointPath' to a temporary location. This enables the
saving of partially trained detectors during the training process. If training is interrupted, such as by
a power outage or system failure, you can resume training from the saved checkpoint.

options = trainingOptions('sgdm', ...
        'MiniBatchSize', 16, ....
        'InitialLearnRate',1e-3, ...
        'MaxEpochs',20,...
        'CheckpointPath', tempdir, ...
        'Shuffle','never');

Use trainYOLOv2ObjectDetector (Computer Vision Toolbox) function to train YOLO v2 object
detector.
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[detector,info] = trainYOLOv2ObjectDetector(preprocessedTrainingData,lgraph,options);

*************************************************************************
Training a YOLO v2 Object Detector for the following object classes:

* vehicle

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:02 |         8.43 |         71.1 |          0.0010 |
|       5 |          50 |       00:01:26 |         0.71 |          0.5 |          0.0010 |
|      10 |         100 |       00:02:46 |         0.75 |          0.6 |          0.0010 |
|      14 |         150 |       00:04:04 |         0.53 |          0.3 |          0.0010 |
|      19 |         200 |       00:05:23 |         0.48 |          0.2 |          0.0010 |
|      20 |         220 |       00:05:53 |         0.57 |          0.3 |          0.0010 |
|========================================================================================|
Detector training complete.
*************************************************************************

As a quick test, run the detector on one test image. Make sure you resize the image to the same size
as the training images.

I = imread(testDataTbl.imageFilename{2});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I_new = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I_new)
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Load Pretrained Network

Load the pretrained network.

snet=detector.Network;
I_pre=yolo_pre_proc(I);

Use analyzeNetwork to obtain information about the network layers:

analyzeNetwork(snet)

Create Target Object

Create a target object for your target device with a vendor name and an interface to connect your
target device to the host computer. Interface options are JTAG (default) and Ethernet. Vendor options
are Intel or Xilinx. Use the installed Xilinx Vivado Design Suite over an Ethernet connection to
program the device.

hTarget = dlhdl.Target('Xilinx', 'Interface', 'Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pre-trained series network, trainedNetNoCar, as the
network. Make sure the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Zynq UltraScale+ MPSoC ZCU102 board.
The bitstream uses a single data type.

hW=dlhdl.Workflow('Network', snet, 'Bitstream', 'zcu102_single','Target',hTarget)

hW = 
  Workflow with properties:

            Network: [1×1 DAGNetwork]
          Bitstream: 'zcu102_single'
    ProcessorConfig: []
             Target: [1×1 dlhdl.Target]

Compile YOLO v2 Object Detector

To compile the snet series network, run the compile function of the dlhdl.Workflow object .

dn = hW.compile

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single ...
### The network includes the following layers:

     1   'data'                  Image Input                224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                 Convolution                64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'bn_conv1'              Batch Normalization        Batch normalization with 64 channels                                  (HW Layer)
     4   'conv1_relu'            ReLU                       ReLU                                                                  (HW Layer)
     5   'pool1'                 Max Pooling                3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     6   'res2a_branch2a'        Convolution                64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     7   'bn2a_branch2a'         Batch Normalization        Batch normalization with 64 channels                                  (HW Layer)
     8   'res2a_branch2a_relu'   ReLU                       ReLU                                                                  (HW Layer)
     9   'res2a_branch2b'        Convolution                64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
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    10   'bn2a_branch2b'         Batch Normalization        Batch normalization with 64 channels                                  (HW Layer)
    11   'res2a'                 Addition                   Element-wise addition of 2 inputs                                     (HW Layer)
    12   'res2a_relu'            ReLU                       ReLU                                                                  (HW Layer)
    13   'res2b_branch2a'        Convolution                64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    14   'bn2b_branch2a'         Batch Normalization        Batch normalization with 64 channels                                  (HW Layer)
    15   'res2b_branch2a_relu'   ReLU                       ReLU                                                                  (HW Layer)
    16   'res2b_branch2b'        Convolution                64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    17   'bn2b_branch2b'         Batch Normalization        Batch normalization with 64 channels                                  (HW Layer)
    18   'res2b'                 Addition                   Element-wise addition of 2 inputs                                     (HW Layer)
    19   'res2b_relu'            ReLU                       ReLU                                                                  (HW Layer)
    20   'res3a_branch2a'        Convolution                128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    21   'bn3a_branch2a'         Batch Normalization        Batch normalization with 128 channels                                 (HW Layer)
    22   'res3a_branch2a_relu'   ReLU                       ReLU                                                                  (HW Layer)
    23   'res3a_branch2b'        Convolution                128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'bn3a_branch2b'         Batch Normalization        Batch normalization with 128 channels                                 (HW Layer)
    25   'res3a'                 Addition                   Element-wise addition of 2 inputs                                     (HW Layer)
    26   'res3a_relu'            ReLU                       ReLU                                                                  (HW Layer)
    27   'res3a_branch1'         Convolution                128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    28   'bn3a_branch1'          Batch Normalization        Batch normalization with 128 channels                                 (HW Layer)
    29   'res3b_branch2a'        Convolution                128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    30   'bn3b_branch2a'         Batch Normalization        Batch normalization with 128 channels                                 (HW Layer)
    31   'res3b_branch2a_relu'   ReLU                       ReLU                                                                  (HW Layer)
    32   'res3b_branch2b'        Convolution                128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'bn3b_branch2b'         Batch Normalization        Batch normalization with 128 channels                                 (HW Layer)
    34   'res3b'                 Addition                   Element-wise addition of 2 inputs                                     (HW Layer)
    35   'res3b_relu'            ReLU                       ReLU                                                                  (HW Layer)
    36   'res4a_branch2a'        Convolution                256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    37   'bn4a_branch2a'         Batch Normalization        Batch normalization with 256 channels                                 (HW Layer)
    38   'res4a_branch2a_relu'   ReLU                       ReLU                                                                  (HW Layer)
    39   'res4a_branch2b'        Convolution                256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'bn4a_branch2b'         Batch Normalization        Batch normalization with 256 channels                                 (HW Layer)
    41   'res4a'                 Addition                   Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res4a_relu'            ReLU                       ReLU                                                                  (HW Layer)
    43   'res4a_branch1'         Convolution                256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    44   'bn4a_branch1'          Batch Normalization        Batch normalization with 256 channels                                 (HW Layer)
    45   'res4b_branch2a'        Convolution                256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'bn4b_branch2a'         Batch Normalization        Batch normalization with 256 channels                                 (HW Layer)
    47   'res4b_branch2a_relu'   ReLU                       ReLU                                                                  (HW Layer)
    48   'res4b_branch2b'        Convolution                256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    49   'bn4b_branch2b'         Batch Normalization        Batch normalization with 256 channels                                 (HW Layer)
    50   'res4b'                 Addition                   Element-wise addition of 2 inputs                                     (HW Layer)
    51   'res4b_relu'            ReLU                       ReLU                                                                  (HW Layer)
    52   'yolov2Conv1'           Convolution                256 3×3×256 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    53   'yolov2Batch1'          Batch Normalization        Batch normalization with 256 channels                                 (HW Layer)
    54   'yolov2Relu1'           ReLU                       ReLU                                                                  (HW Layer)
    55   'yolov2Conv2'           Convolution                256 3×3×256 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    56   'yolov2Batch2'          Batch Normalization        Batch normalization with 256 channels                                 (HW Layer)
    57   'yolov2Relu2'           ReLU                       ReLU                                                                  (HW Layer)
    58   'yolov2ClassConv'       Convolution                42 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    59   'yolov2Transform'       YOLO v2 Transform Layer.   YOLO v2 Transform Layer with 7 anchors.                               (SW Layer)
    60   'yolov2OutputLayer'     YOLO v2 Output             YOLO v2 Output with 7 anchors.                                        (SW Layer)

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
5 Memory Regions created.

Skipping: data
Compiling leg: conv1>>pool1 ...
Compiling leg: conv1>>pool1 ... complete.
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Compiling leg: res2a_branch2a>>res2a_branch2b ...
Compiling leg: res2a_branch2a>>res2a_branch2b ... complete.
Compiling leg: res2b_branch2a>>res2b_branch2b ...
Compiling leg: res2b_branch2a>>res2b_branch2b ... complete.
Compiling leg: res3a_branch1 ...
Compiling leg: res3a_branch1 ... complete.
Compiling leg: res3a_branch2a>>res3a_branch2b ...
Compiling leg: res3a_branch2a>>res3a_branch2b ... complete.
Compiling leg: res3b_branch2a>>res3b_branch2b ...
Compiling leg: res3b_branch2a>>res3b_branch2b ... complete.
Compiling leg: res4a_branch1 ...
Compiling leg: res4a_branch1 ... complete.
Compiling leg: res4a_branch2a>>res4a_branch2b ...
Compiling leg: res4a_branch2a>>res4a_branch2b ... complete.
Compiling leg: res4b_branch2a>>res4b_branch2b ...
Compiling leg: res4b_branch2a>>res4b_branch2b ... complete.
Compiling leg: yolov2Conv1>>yolov2ClassConv ...
Compiling leg: yolov2Conv1>>yolov2ClassConv ... complete.
Skipping: yolov2Transform
Skipping: yolov2OutputLayer
Creating Schedule...
.....................
Creating Schedule...complete.
Creating Status Table...
....................
Creating Status Table...complete.
Emitting Schedule...
....................
Emitting Schedule...complete.
Emitting Status Table...
......................
Emitting Status Table...complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"       
    "OutputResultOffset"        "0x01800000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x01c00000"     "4.0 MB"        
    "SystemBufferOffset"        "0x02000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x04000000"     "20.0 MB"       
    "EndOffset"                 "0x05400000"     "Total: 84.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
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Program the Bitstream onto FPGA and Download Network Weights

To deploy the network on the Zynq® UltraScale+™ MPSoC ZCU102 hardware, run the deploy
function of the dlhdl.Workflow object . This function uses the output of the compile function to
program the FPGA board by using the programming file.The function also downloads the network
weights and biases. The deploy function checks for the Xilinx Vivado tool and the supported tool
version. It then starts programming the FPGA device by using the bitstream, displays progress
messages and the time it takes to deploy the network.

hW.deploy

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.

System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 04-Jan-2021 13:59:03

Load the Example Image and Run The Prediction

Execute the predict function on the dlhdl.Workflow object and display the result:

[prediction, speed] = hW.predict(I_pre,'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   16974672                  0.07716                       1           16974672             13.0
    conv1                  2224187                  0.01011 
    pool1                   573166                  0.00261 
    res2a_branch2a          972763                  0.00442 
    res2a_branch2b          972632                  0.00442 
    res2a                   209363                  0.00095 
    res2b_branch2a          972674                  0.00442 
    res2b_branch2b          973107                  0.00442 
    res2b                   209914                  0.00095 
    res3a_branch1           538478                  0.00245 
    res3a_branch2a          747078                  0.00340 
    res3a_branch2b          904530                  0.00411 
    res3a                   104830                  0.00048 
    res3b_branch2a          904540                  0.00411 
    res3b_branch2b          904278                  0.00411 
    res3b                   104900                  0.00048 
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    res4a_branch1           485804                  0.00221 
    res4a_branch2a          485923                  0.00221 
    res4a_branch2b          880309                  0.00400 
    res4a                    52446                  0.00024 
    res4b_branch2a          880071                  0.00400 
    res4b_branch2b          880065                  0.00400 
    res4b                    52456                  0.00024 
    yolov2Conv1             880210                  0.00400 
    yolov2Conv2             880375                  0.00400 
    yolov2ClassConv         179300                  0.00081 
 * The clock frequency of the DL processor is: 220MHz

Display the prediction results.

[bboxesn, scoresn, labelsn] = yolo_post_proc(prediction,I_pre,anchorBoxes,{'Vehicle'});
I_new3 = insertObjectAnnotation(I,'rectangle',bboxesn,scoresn);
figure
imshow(I_new3)
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Customize Bitstream Configuration to Meet Resource Use
Requirements

The user wants to deploy a digit recognition network with a target performance of 500 frames per
second (FPS) to a Xilinx™ ZCU102 ZU4CG device. The target device resource counts are:

• Digital signal processor (DSP) slice count - 240
• Block random access memory (BRAM) count -128

The reference (shipping) zcu102_int8 bitstream configuration is for a Xilinx ZCU102 ZU9EG
device. The default board resource counts are:

• Digital signal processor (DSP) slice count - 2520
• Block random access memory (BRAM) count -912

The default board resource counts exceed the user resource budget and is on the higher end of the
cost spectrum. You can achieve target performance and resource use budget by quantizing the target
deep learning network and customizing the custom default bitstream configuration.

In this example create a custom bitstream configuration to match your resource budget and
performance requirements.

Prerequisites

• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox Model Quantization Library

Load Pretrained Network

To load the pretrained series network, that has been trained on the Modified National Institute
Standards of Technology (MNIST) database, enter:

snet = getDigitsNetwork;

Quantize Network

To quantize the MNIST based digits network, enter:

dlquantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');
Image = imageDatastore('five_28x28.pgm','Labels','five');
dlquantObj.calibrate(Image);

Retrieve zcu102_int Bitstream Configuration

To retrieve the zcu102_int8 bitstream configuration, use the dlhdl.ProcessorConfig object.
For more information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the
processor configuration, see getModuleProperty and setModuleProperty.

hPC_reference = dlhdl.ProcessorConfig('Bitstream','zcu102_int8')

hPC_reference = 
                    Processing Module "conv"
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                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 64
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 16
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'int8'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 250
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Estimate Network Performance and Resource Utilization for zcu102_int8 Bitstream
Configuration

To estimate the performance of the digits series network, use the estimatePerformance function of
the dlhdl.ProcessorConfig object. The function returns the estimated layer latency, network
latency, and network performance in frames per second (Frames/s).

To estimate the resource use of the zcu102_int8 bitstream, use the estimateResources
function of the dlhdl.ProcessorConfig object. The function returns the estimated DSP slice and
BRAM usage.

hPC_reference.estimatePerformance(dlquantObj)
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### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### The network includes the following layers:
     1   'imageinput'    Image Input             28×28×1 images with 'zerocenter' normalization                (SW Layer)
     2   'conv_1'        Convolution             8 3×3×1 convolutions with stride [1  1] and padding 'same'    (HW Layer)
     3   'relu_1'        ReLU                    ReLU                                                          (HW Layer)
     4   'maxpool_1'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     5   'conv_2'        Convolution             16 3×3×8 convolutions with stride [1  1] and padding 'same'   (HW Layer)
     6   'relu_2'        ReLU                    ReLU                                                          (HW Layer)
     7   'maxpool_2'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     8   'conv_3'        Convolution             32 3×3×16 convolutions with stride [1  1] and padding 'same'  (HW Layer)
     9   'relu_3'        ReLU                    ReLU                                                          (HW Layer)
    10   'fc'            Fully Connected         10 fully connected layer                                      (HW Layer)
    11   'softmax'       Softmax                 softmax                                                       (SW Layer)
    12   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes                   (SW Layer)
                                                                                                             
### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      58101                  0.00023                       1              58101           4302.9
    ____conv_1                4391                  0.00002 
    ____maxpool_1             2877                  0.00001 
    ____conv_2                2351                  0.00001 
    ____maxpool_2             2265                  0.00001 
    ____conv_3                2651                  0.00001 
    ____fc                   43566                  0.00017 
 * The clock frequency of the DL processor is: 250MHz

hPC_reference.estimateResources

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                797( 32%)        386( 43%)     142494( 52%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

The estimated performance is 4303 FPS and the estimated resource use counts are:

• Digital signal processor (DSP) slice count - 797
• Block random access memory (BRAM) count -386

The estimated DSP slice count and BRAM count use exceeds the target device resource budget.
Customize the bitstream configuration to reduce resource use.

Create Custom Bitstream Configuration

To create a custom processor configuration, use the dlhdl.ProcessorConfig object. For more
information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the processor
configuration, see getModuleProperty and setModuleProperty.
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To reduce the resource use for the custom bitstream, modify the KernelDataType for the conv,
fc, and adder modules. Modify the ConvThreadNumber to reduce DSP slice count. Reduce the
InputMemorySize and OutputMemorySize for the conv module to reduce BRAM count.

hPC_custom = dlhdl.ProcessorConfig;
hPC_custom.ProcessorDataType = 'int8';
hPC_custom.setModuleProperty('conv','ConvThreadNumber',4);
hPC_custom.setModuleProperty('conv','InputMemorySize',[30 30 1]);
hPC_custom.setModuleProperty('conv','OutputMemorySize',[30 30 1]);
hPC_custom

hPC_custom = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 4
                             InputMemorySize: [30 30 1]
                            OutputMemorySize: [30 30 1]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'int8'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''
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Estimate Network Performance and Resource Utilization for Custom Bitstream
Configuration

To estimate the performance of the digits series network, use the estimatePerformance function of
the dlhdl.ProcessorConfig object. The function returns the estimated layer latency, network
latency, and network performance in frames per second (Frames/s).

To estimate the resource use of the hPC_custom bitstream, use the estimateResources
function of the dlhdl.ProcessorConfig object. The function returns the estimated DSP slice and
BRAM usage.

hPC_custom.estimatePerformance(dlquantObj)

### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### The network includes the following layers:
     1   'imageinput'    Image Input             28×28×1 images with 'zerocenter' normalization                (SW Layer)
     2   'conv_1'        Convolution             8 3×3×1 convolutions with stride [1  1] and padding 'same'    (HW Layer)
     3   'relu_1'        ReLU                    ReLU                                                          (HW Layer)
     4   'maxpool_1'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     5   'conv_2'        Convolution             16 3×3×8 convolutions with stride [1  1] and padding 'same'   (HW Layer)
     6   'relu_2'        ReLU                    ReLU                                                          (HW Layer)
     7   'maxpool_2'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]   (HW Layer)
     8   'conv_3'        Convolution             32 3×3×16 convolutions with stride [1  1] and padding 'same'  (HW Layer)
     9   'relu_3'        ReLU                    ReLU                                                          (HW Layer)
    10   'fc'            Fully Connected         10 fully connected layer                                      (HW Layer)
    11   'softmax'       Softmax                 softmax                                                       (SW Layer)
    12   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes                   (SW Layer)
                                                                                                             
### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                     433577                  0.00217                       1             433577            461.3
    ____conv_1               26160                  0.00013 
    ____maxpool_1            31888                  0.00016 
    ____conv_2               44736                  0.00022 
    ____maxpool_2            22337                  0.00011 
    ____conv_3              265045                  0.00133 
    ____fc                   43411                  0.00022 
 * The clock frequency of the DL processor is: 200MHz

hPC_custom.estimateResources

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
DL_Processor                131(  6%)        108( 12%)      56270( 21%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

The estimated performance is 461.3 FPS and the estimated resource use counts are:
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• Digital signal processor (DSP) slice count - 131
• Block random access memory (BRAM) count -108

The estimated resources of the customized bitstream match the user target device resource budget
and the estimated performance matches the target network performance.
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Image Classification Using DAG Network Deployed to FPGA

This example shows how to train, compile, and deploy a dlhdl.Workflow object that has ResNet-18
as the network object by using the Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA
and SoC. Use MATLAB® to retrieve the prediction results from the target device.

Required Products

For this example, you need:

• Deep Learning Toolbox ™
• Deep Learning HDL Toolbox ™
• Deep Learning Toolbox Model for ResNet-18 Network
• Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices
• Image Processing Toolbox ™

Load Pretrained SeriesNetwork

To load the pretrained network ResNet-18, enter:

snet = resnet18;

To view the layers of the pretrained network, enter:

analyzeNetwork(snet);

The first layer, the image input layer, requires input images of size 224-by-224-by-3, where 3 is the
number of color channels.

inputSize = snet.Layers(1).InputSize;

Define Training and Validation Data Sets

This example uses the MathWorks MerchData data set. This is a small data set containing 75 images
of MathWorks merchandise, belonging to five different classes (cap, cube, playing cards, screwdriver,
and torch).

curDir = pwd;
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

Replace Final Layers

The fully connected layer and classification layer of the pretrained network net are configured for
1000 classes. These two layers fc1000 and ClassificationLayer_predictions in ResNet-18,
contain information on how to combine the features that the network extracts into class probabilities
and predicted labels. These two layers must be fine-tuned for the new classification problem. Extract
all the layers, except the last two layers, from the pretrained network.

lgraph = layerGraph(snet)
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lgraph = 
  LayerGraph with properties:

         Layers: [71×1 nnet.cnn.layer.Layer]
    Connections: [78×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

numClasses = numel(categories(imdsTrain.Labels))

numClasses = 5

newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
lgraph = replaceLayer(lgraph,'fc1000',newLearnableLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);

Train Network

The network requires input images of size 224-by-224-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images, such as randomly
flipping the training images along the vertical axis and randomly translating them up to 30 pixels
horizontally and vertically. Data augmentation helps prevent the network from overfitting and
memorizing the exact details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
'DataAugmentation',imageAugmenter);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',6, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',3, ...
'Verbose',false, ...
'Plots','training-progress');
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Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available (requires Parallel Computing Toolbox™ and a supported GPU device. For more
information, see “GPU Computing Requirements” (Parallel Computing Toolbox)). Otherwise, the
network uses a CPU (requires MATLAB Coder Interface for Deep learning Libraries™). You can also
specify the execution environment by using the 'ExecutionEnvironment' name-value argument of
trainingOptions.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);

Create Target Object

Use the dlhdl.Target class to create a target object with a custom name for your target device and
an interface to connect your target device to the host computer. Interface options are JTAG and
Ethernet. To use JTAG,Install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath,
enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Create WorkFlow Object

Use the dlhdl.Workflow class to create an object. When you create the object, specify the network
and the bitstream name. Specify netTransfer as the network. Make sure that the bitstream name
matches the data type and the FPGA board that you are targeting. In this example, the target FPGA
board is the Xilinx ZCU102 SoC board. The bitstream uses a single data type.

hW = dlhdl.Workflow('Network', netTransfer, 'Bitstream', 'zcu102_single','Target',hTarget);
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Compile the netTransfer DAG network

To compile the netTransfer DAG network, run the compile method of the dlhdl.Workflow object.
You can optionally specify the maximum number of input frames.

dn = hW.compile('InputFrameNumberLimit',15)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single ...
### The network includes the following layers:

     1   'data'                  Image Input              224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                 Convolution              64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'bn_conv1'              Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
     4   'conv1_relu'            ReLU                     ReLU                                                                  (HW Layer)
     5   'pool1'                 Max Pooling              3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     6   'res2a_branch2a'        Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     7   'bn2a_branch2a'         Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
     8   'res2a_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
     9   'res2a_branch2b'        Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    10   'bn2a_branch2b'         Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
    11   'res2a'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    12   'res2a_relu'            ReLU                     ReLU                                                                  (HW Layer)
    13   'res2b_branch2a'        Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    14   'bn2b_branch2a'         Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
    15   'res2b_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    16   'res2b_branch2b'        Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    17   'bn2b_branch2b'         Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
    18   'res2b'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    19   'res2b_relu'            ReLU                     ReLU                                                                  (HW Layer)
    20   'res3a_branch2a'        Convolution              128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    21   'bn3a_branch2a'         Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    22   'res3a_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    23   'res3a_branch2b'        Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'bn3a_branch2b'         Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    25   'res3a'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    26   'res3a_relu'            ReLU                     ReLU                                                                  (HW Layer)
    27   'res3a_branch1'         Convolution              128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    28   'bn3a_branch1'          Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    29   'res3b_branch2a'        Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    30   'bn3b_branch2a'         Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    31   'res3b_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    32   'res3b_branch2b'        Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'bn3b_branch2b'         Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    34   'res3b'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    35   'res3b_relu'            ReLU                     ReLU                                                                  (HW Layer)
    36   'res4a_branch2a'        Convolution              256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    37   'bn4a_branch2a'         Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    38   'res4a_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    39   'res4a_branch2b'        Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'bn4a_branch2b'         Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    41   'res4a'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res4a_relu'            ReLU                     ReLU                                                                  (HW Layer)
    43   'res4a_branch1'         Convolution              256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    44   'bn4a_branch1'          Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    45   'res4b_branch2a'        Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'bn4b_branch2a'         Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    47   'res4b_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
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    48   'res4b_branch2b'        Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    49   'bn4b_branch2b'         Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    50   'res4b'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    51   'res4b_relu'            ReLU                     ReLU                                                                  (HW Layer)
    52   'res5a_branch2a'        Convolution              512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    53   'bn5a_branch2a'         Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    54   'res5a_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    55   'res5a_branch2b'        Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    56   'bn5a_branch2b'         Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    57   'res5a'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    58   'res5a_relu'            ReLU                     ReLU                                                                  (HW Layer)
    59   'res5a_branch1'         Convolution              512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    60   'bn5a_branch1'          Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    61   'res5b_branch2a'        Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    62   'bn5b_branch2a'         Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    63   'res5b_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    64   'res5b_branch2b'        Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    65   'bn5b_branch2b'         Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    66   'res5b'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    67   'res5b_relu'            ReLU                     ReLU                                                                  (HW Layer)
    68   'pool5'                 Global Average Pooling   Global average pooling                                                (HW Layer)
    69   'new_fc'                Fully Connected          5 fully connected layer                                               (HW Layer)
    70   'prob'                  Softmax                  softmax                                                               (SW Layer)
    71   'new_classoutput'       Classification Output    crossentropyex with 'MathWorks Cap' and 4 other classes               (SW Layer)

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
5 Memory Regions created.

Skipping: data
Compiling leg: conv1>>pool1 ...
Compiling leg: conv1>>pool1 ... complete.
Compiling leg: res2a_branch2a>>res2a_branch2b ...
Compiling leg: res2a_branch2a>>res2a_branch2b ... complete.
Compiling leg: res2b_branch2a>>res2b_branch2b ...
Compiling leg: res2b_branch2a>>res2b_branch2b ... complete.
Compiling leg: res3a_branch1 ...
Compiling leg: res3a_branch1 ... complete.
Compiling leg: res3a_branch2a>>res3a_branch2b ...
Compiling leg: res3a_branch2a>>res3a_branch2b ... complete.
Compiling leg: res3b_branch2a>>res3b_branch2b ...
Compiling leg: res3b_branch2a>>res3b_branch2b ... complete.
Compiling leg: res4a_branch1 ...
Compiling leg: res4a_branch1 ... complete.
Compiling leg: res4a_branch2a>>res4a_branch2b ...
Compiling leg: res4a_branch2a>>res4a_branch2b ... complete.
Compiling leg: res4b_branch2a>>res4b_branch2b ...
Compiling leg: res4b_branch2a>>res4b_branch2b ... complete.
Compiling leg: res5a_branch1 ...
Compiling leg: res5a_branch1 ... complete.
Compiling leg: res5a_branch2a>>res5a_branch2b ...
Compiling leg: res5a_branch2a>>res5a_branch2b ... complete.
Compiling leg: res5b_branch2a>>res5b_branch2b ...
Compiling leg: res5b_branch2a>>res5b_branch2b ... complete.
Compiling leg: pool5 ...
Compiling leg: pool5 ... complete.
Compiling leg: new_fc ...
Compiling leg: new_fc ... complete.
Skipping: prob
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Skipping: new_classoutput
Creating Schedule...
...........................
Creating Schedule...complete.
Creating Status Table...
..........................
Creating Status Table...complete.
Emitting Schedule...
..........................
Emitting Schedule...complete.
Emitting Status Table...
............................
Emitting Status Table...complete.

### Allocating external memory buffers:

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "12.0 MB"        
    "OutputResultOffset"        "0x00c00000"     "4.0 MB"         
    "SchedulerDataOffset"       "0x01000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x01400000"     "28.0 MB"        
    "InstructionDataOffset"     "0x03000000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x03400000"     "52.0 MB"        
    "FCWeightDataOffset"        "0x06800000"     "4.0 MB"         
    "EndOffset"                 "0x06c00000"     "Total: 108.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Load Image for Prediction

Load the example image.

imgFile = fullfile(pwd,'MerchData','MathWorks Cube','Mathworks cube_0.jpg');
inputImg = imresize(imread(imgFile),[224 224]);
imshow(inputImg)
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Run Prediction for One Image

Execute the predict method on the dlhdl.Workflow object and then show the label in the MATLAB
command window.

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   23470681                  0.10668                       1           23470681              9.4
    conv1                  2224133                  0.01011 
    pool1                   573009                  0.00260 
    res2a_branch2a          972706                  0.00442 
    res2a_branch2b          972715                  0.00442 
    res2a                   210584                  0.00096 
    res2b_branch2a          972670                  0.00442 
    res2b_branch2b          973171                  0.00442 
    res2b                   210235                  0.00096 
    res3a_branch1           538433                  0.00245 
    res3a_branch2a          746681                  0.00339 
    res3a_branch2b          904757                  0.00411 
    res3a                   104923                  0.00048 
    res3b_branch2a          904442                  0.00411 
    res3b_branch2b          904234                  0.00411 
    res3b                   105019                  0.00048 
    res4a_branch1           485689                  0.00221 
    res4a_branch2a          486053                  0.00221 
    res4a_branch2b          880357                  0.00400 
    res4a                    52814                  0.00024 
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    res4b_branch2a          880122                  0.00400 
    res4b_branch2b          880268                  0.00400 
    res4b                    52492                  0.00024 
    res5a_branch1          1056215                  0.00480 
    res5a_branch2a         1056269                  0.00480 
    res5a_branch2b         2057399                  0.00935 
    res5a                    26272                  0.00012 
    res5b_branch2a         2057349                  0.00935 
    res5b_branch2b         2057639                  0.00935 
    res5b                    26409                  0.00012 
    pool5                    71402                  0.00032 
    new_fc                   24650                  0.00011 
 * The clock frequency of the DL processor is: 220MHz

[val, idx] = max(prediction);
netTransfer.Layers(end).ClassNames{idx}

ans = 
'MathWorks Cube'
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Classify Images on an FPGA Using a Quantized DAG Network

In this example, you use Deep Learning HDL Toolbox™ to deploy a quantized deep convolutional
neural network and classify an image. The example uses the pretrained ResNet-18 convolutional
neural network to demonstrate transfer learning, quantization, and deployment for the quantized
network. Use MATLAB ® to retrieve the prediction results.

ResNet-18 has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Required Products

For this example, you need:

• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox Model for ResNet-18 Network
• Deep Learning HDL Toolbox™ Support Package for Xilinx® FPGA and SoC Devices
• Image Processing Toolbox™
• Deep Learning Toolbox Model Quantization Library
• MATLAB® Coder™ Interface for Deep Learning Libraries

Transfer Learning Using Resnet-18

To perform classification on a new set of images, you fine-tune a pretrained ResNet-18 convolutional
neural network by transfer learning. In transfer learning, you can take a pretrained network and use
it as a starting point to learn a new task. Fine-tuning a network with transfer learning is usually much
faster and easier than training a network with randomly initialized weights from scratch. You can
quickly transfer learned features to a new task using a smaller number of training images.

Load Pretrained ResNet-18 Network

To load the pretrained network ResNet-18, enter:

net = resnet18;

To view the layers of the pretrained network, enter:

analyzeNetwork(net);

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize;

Define Training and Validation Data Sets

This example uses the MathWorks MerchData data set. This is a small data set containing 75 images
of MathWorks merchandise, belonging to five different classes (cap, cube, playing cards, screwdriver,
and torch).
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curDir = pwd;
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
validationData_FPGA = imdsValidation.subset(1:1);

Replace Final Layers

The fully connected layer and classification layer of the pretrained network net are configured for
1000 classes. These two layers fc1000 and ClassificationLayer_predictions in ResNet-18,
contain information on how to combine the features that the network extracts into class probabilities
and predicted labels . These two layers must be fine-tuned for the new classification problem. Extract
all the layers, except the last two layers, from the pretrained network.

lgraph = layerGraph(net)

lgraph = 
  LayerGraph with properties:

         Layers: [71×1 nnet.cnn.layer.Layer]
    Connections: [78×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

numClasses = numel(categories(imdsTrain.Labels))

numClasses = 5

newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
lgraph = replaceLayer(lgraph,'fc1000',newLearnableLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);

Train Network

The network requires input images of size 224-by-224-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images, such as randomly
flipping the training images along the vertical axis and randomly translating them up to 30 pixels
horizontally and vertically. Data augmentation helps prevent the network from overfitting and
memorizing the exact details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.
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augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
'DataAugmentation',imageAugmenter);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',6, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',3, ...
'Verbose',false, ...
'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available (requires Parallel Computing Toolbox™ and a supported GPU device. For more
information, see “GPU Computing Requirements” (Parallel Computing Toolbox)). Otherwise, the
network uses a CPU (requires MATLAB Coder Interface for Deep learning Libraries™). You can also
specify the execution environment by using the 'ExecutionEnvironment' name-value argument of
trainingOptions.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);
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Quantize the Network

Create a dlquantizer object and specify the network to quantize.

dlquantObj = dlquantizer(netTransfer,'ExecutionEnvironment','FPGA');

Calibrate the Quantized Network Object

Use the calibrate function to exercise the network with sample inputs and collect the range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The calibrate function returns a table. Each
row of the table contains range information for a learnable parameter of the quantized network.

dlquantObj.calibrate(augimdsTrain)

ans=95×5 table
       Optimized Layer Name       Network Layer Name    Learnables / Activations    MinValue    MaxValue
    __________________________    __________________    ________________________    ________    ________

    {'conv1_Weights'         }    {'conv1'         }           "Weights"            -0.56885    0.65166 
    {'conv1_Bias'            }    {'conv1'         }           "Bias"               -0.66869    0.67504 
    {'res2a_branch2a_Weights'}    {'res2a_branch2a'}           "Weights"            -0.46037    0.34327 
    {'res2a_branch2a_Bias'   }    {'res2a_branch2a'}           "Bias"               -0.82446     1.3337 
    {'res2a_branch2b_Weights'}    {'res2a_branch2b'}           "Weights"             -0.8002    0.60524 
    {'res2a_branch2b_Bias'   }    {'res2a_branch2b'}           "Bias"                -1.3954     1.7536 
    {'res2b_branch2a_Weights'}    {'res2b_branch2a'}           "Weights"            -0.33991     0.3503 
    {'res2b_branch2a_Bias'   }    {'res2b_branch2a'}           "Bias"                -1.1367     1.5317 
    {'res2b_branch2b_Weights'}    {'res2b_branch2b'}           "Weights"             -1.2616    0.93491 
    {'res2b_branch2b_Bias'   }    {'res2b_branch2b'}           "Bias"               -0.86662     1.2352 
    {'res3a_branch2a_Weights'}    {'res3a_branch2a'}           "Weights"            -0.19675    0.23903 
    {'res3a_branch2a_Bias'   }    {'res3a_branch2a'}           "Bias"                -0.5063    0.69182 
    {'res3a_branch2b_Weights'}    {'res3a_branch2b'}           "Weights"             -0.5385    0.74078 
    {'res3a_branch2b_Bias'   }    {'res3a_branch2b'}           "Bias"               -0.66884     1.2152 
    {'res3a_branch1_Weights' }    {'res3a_branch1' }           "Weights"            -0.66715    0.98369 
    {'res3a_branch1_Bias'    }    {'res3a_branch1' }           "Bias"               -0.97269    0.83073 
      ⋮

Create Target Object

Use the dlhdl.Target class to create a target object with a custom name for your target device and
an interface to connect your target device to the host computer. Interface options are JTAG and
Ethernet. To use JTAG,Install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath,
enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Create WorkFlow Object

Use the dlhdl.Workflow class to create an object. When you create the object, specify the network
and the bitstream name. Specify the saved pretrained alexnet neural network as the network. Make
sure that the bitstream name matches the data type and the FPGA board that you are targeting. In
this example, the target FPGA board is the Xilinx ZCU102 SoC board. The bitstream uses a single
data type.
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hW = dlhdl.Workflow('Network', dlquantObj, 'Bitstream', 'zcu102_int8','Target',hTarget);

Compile the netTransfer DAG network

To compile the netTransfer DAG network, run the compile method of the dlhdl.Workflow object.
You can optionally specify the maximum number of input frames.

dn = hW.compile('InputFrameNumberLimit',15)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_int8.
### The network includes the following layers:
     1   'data'                  Image Input                  224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                 Convolution                  64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'bn_conv1'              Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     4   'conv1_relu'            ReLU                         ReLU                                                                  (HW Layer)
     5   'pool1'                 Max Pooling                  3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     6   'res2a_branch2a'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     7   'bn2a_branch2a'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     8   'res2a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
     9   'res2a_branch2b'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    10   'bn2a_branch2b'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    11   'res2a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    12   'res2a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    13   'res2b_branch2a'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    14   'bn2b_branch2a'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    15   'res2b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    16   'res2b_branch2b'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    17   'bn2b_branch2b'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    18   'res2b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    19   'res2b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    20   'res3a_branch2a'        Convolution                  128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    21   'bn3a_branch2a'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    22   'res3a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    23   'res3a_branch2b'        Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'bn3a_branch2b'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    25   'res3a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    26   'res3a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    27   'res3a_branch1'         Convolution                  128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    28   'bn3a_branch1'          Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    29   'res3b_branch2a'        Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    30   'bn3b_branch2a'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    31   'res3b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    32   'res3b_branch2b'        Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'bn3b_branch2b'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    34   'res3b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    35   'res3b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    36   'res4a_branch2a'        Convolution                  256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    37   'bn4a_branch2a'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    38   'res4a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    39   'res4a_branch2b'        Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'bn4a_branch2b'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    41   'res4a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res4a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    43   'res4a_branch1'         Convolution                  256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    44   'bn4a_branch1'          Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    45   'res4b_branch2a'        Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'bn4b_branch2a'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
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    47   'res4b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    48   'res4b_branch2b'        Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    49   'bn4b_branch2b'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    50   'res4b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    51   'res4b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    52   'res5a_branch2a'        Convolution                  512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    53   'bn5a_branch2a'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    54   'res5a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    55   'res5a_branch2b'        Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    56   'bn5a_branch2b'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    57   'res5a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    58   'res5a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    59   'res5a_branch1'         Convolution                  512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    60   'bn5a_branch1'          Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    61   'res5b_branch2a'        Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    62   'bn5b_branch2a'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    63   'res5b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    64   'res5b_branch2b'        Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    65   'bn5b_branch2b'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    66   'res5b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    67   'res5b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    68   'pool5'                 2-D Global Average Pooling   2-D global average pooling                                            (HW Layer)
    69   'new_fc'                Fully Connected              5 fully connected layer                                               (HW Layer)
    70   'prob'                  Softmax                      softmax                                                               (HW Layer)
    71   'new_classoutput'       Classification Output        crossentropyex with 'MathWorks Cap' and 4 other classes               (SW Layer)
                                                                                                                                  
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'new_classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: conv1>>pool1 ...
### Compiling layer group: conv1>>pool1 ... complete.
### Compiling layer group: res2a_branch2a>>res2a_branch2b ...
### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete.
### Compiling layer group: res2b_branch2a>>res2b_branch2b ...
### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete.
### Compiling layer group: res3a_branch1 ...
### Compiling layer group: res3a_branch1 ... complete.
### Compiling layer group: res3a_branch2a>>res3a_branch2b ...
### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete.
### Compiling layer group: res3b_branch2a>>res3b_branch2b ...
### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete.
### Compiling layer group: res4a_branch1 ...
### Compiling layer group: res4a_branch1 ... complete.
### Compiling layer group: res4a_branch2a>>res4a_branch2b ...
### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete.
### Compiling layer group: res4b_branch2a>>res4b_branch2b ...
### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete.
### Compiling layer group: res5a_branch1 ...
### Compiling layer group: res5a_branch1 ... complete.
### Compiling layer group: res5a_branch2a>>res5a_branch2b ...
### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete.
### Compiling layer group: res5b_branch2a>>res5b_branch2b ...
### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete.
### Compiling layer group: pool5 ...
### Compiling layer group: pool5 ... complete.
### Compiling layer group: new_fc ...
### Compiling layer group: new_fc ... complete.
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### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "8.0 MB"        
    "OutputResultOffset"        "0x00800000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00c00000"     "4.0 MB"        
    "SystemBufferOffset"        "0x01000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x03000000"     "16.0 MB"       
    "FCWeightDataOffset"        "0x04000000"     "4.0 MB"        
    "EndOffset"                 "0x04400000"     "Total: 68.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 20-Jan-2022 08:45:22
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 20-Jan-2022 08:45:22

Load Image for Prediction

Load the example image.

imgFile = fullfile(pwd,'MerchData','MathWorks Cube','Mathworks cube_0.jpg');
inputImg = imresize(imread(imgFile),[224 224]);
imshow(inputImg)
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Run Prediction for One Image

Execute the predict method on the dlhdl.Workflow object and then show the label in the MATLAB
command window.

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7389695                  0.02956                       1            7392277             33.8
    conv1                  1115359                  0.00446 
    pool1                   237742                  0.00095 
    res2a_branch2a          269669                  0.00108 
    res2a_branch2b          270019                  0.00108 
    res2a                   103095                  0.00041 
    res2b_branch2a          269716                  0.00108 
    res2b_branch2b          269895                  0.00108 
    res2b                   102385                  0.00041 
    res3a_branch1           156246                  0.00062 
    res3a_branch2a          227373                  0.00091 
    res3a_branch2b          245201                  0.00098 
    res3a                    52543                  0.00021 
    res3b_branch2a          244793                  0.00098 
    res3b_branch2b          244952                  0.00098 
    res3b                    51176                  0.00020 
    res4a_branch1           135788                  0.00054 
    res4a_branch2a          135745                  0.00054 
    res4a_branch2b          237464                  0.00095 
    res4a                    25612                  0.00010 
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    res4b_branch2a          237244                  0.00095 
    res4b_branch2b          237242                  0.00095 
    res4b                    25952                  0.00010 
    res5a_branch1           311610                  0.00125 
    res5a_branch2a          311719                  0.00125 
    res5a_branch2b          596194                  0.00238 
    res5a                    13191                  0.00005 
    res5b_branch2a          595890                  0.00238 
    res5b_branch2b          596795                  0.00239 
    res5b                    14141                  0.00006 
    pool5                    36932                  0.00015 
    new_fc                   17825                  0.00007 
 * The clock frequency of the DL processor is: 250MHz

[val, idx] = max(prediction);
dlquantObj.NetworkObject.Layers(end).ClassNames{idx}

ans = 
'MathWorks Cube'

Performance Comparison

Compare the performance of the quantized network to the single data type network.

options_FPGA = dlquantizationOptions('Bitstream','zcu102_int8','Target',hTarget);
prediction_FPGA = dlquantObj.validate(imdsValidation,options_FPGA)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_int8.
### The network includes the following layers:
     1   'data'                  Image Input                  224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                 Convolution                  64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'bn_conv1'              Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     4   'conv1_relu'            ReLU                         ReLU                                                                  (HW Layer)
     5   'pool1'                 Max Pooling                  3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     6   'res2a_branch2a'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     7   'bn2a_branch2a'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
     8   'res2a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
     9   'res2a_branch2b'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    10   'bn2a_branch2b'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    11   'res2a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    12   'res2a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    13   'res2b_branch2a'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    14   'bn2b_branch2a'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    15   'res2b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    16   'res2b_branch2b'        Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    17   'bn2b_branch2b'         Batch Normalization          Batch normalization with 64 channels                                  (HW Layer)
    18   'res2b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    19   'res2b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    20   'res3a_branch2a'        Convolution                  128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    21   'bn3a_branch2a'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    22   'res3a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    23   'res3a_branch2b'        Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'bn3a_branch2b'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    25   'res3a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    26   'res3a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    27   'res3a_branch1'         Convolution                  128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    28   'bn3a_branch1'          Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    29   'res3b_branch2a'        Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
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    30   'bn3b_branch2a'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    31   'res3b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    32   'res3b_branch2b'        Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'bn3b_branch2b'         Batch Normalization          Batch normalization with 128 channels                                 (HW Layer)
    34   'res3b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    35   'res3b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    36   'res4a_branch2a'        Convolution                  256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    37   'bn4a_branch2a'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    38   'res4a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    39   'res4a_branch2b'        Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'bn4a_branch2b'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    41   'res4a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res4a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    43   'res4a_branch1'         Convolution                  256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    44   'bn4a_branch1'          Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    45   'res4b_branch2a'        Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'bn4b_branch2a'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    47   'res4b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    48   'res4b_branch2b'        Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    49   'bn4b_branch2b'         Batch Normalization          Batch normalization with 256 channels                                 (HW Layer)
    50   'res4b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    51   'res4b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    52   'res5a_branch2a'        Convolution                  512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    53   'bn5a_branch2a'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    54   'res5a_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    55   'res5a_branch2b'        Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    56   'bn5a_branch2b'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    57   'res5a'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    58   'res5a_relu'            ReLU                         ReLU                                                                  (HW Layer)
    59   'res5a_branch1'         Convolution                  512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    60   'bn5a_branch1'          Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    61   'res5b_branch2a'        Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    62   'bn5b_branch2a'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    63   'res5b_branch2a_relu'   ReLU                         ReLU                                                                  (HW Layer)
    64   'res5b_branch2b'        Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    65   'bn5b_branch2b'         Batch Normalization          Batch normalization with 512 channels                                 (HW Layer)
    66   'res5b'                 Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    67   'res5b_relu'            ReLU                         ReLU                                                                  (HW Layer)
    68   'pool5'                 2-D Global Average Pooling   2-D global average pooling                                            (HW Layer)
    69   'new_fc'                Fully Connected              5 fully connected layer                                               (HW Layer)
    70   'prob'                  Softmax                      softmax                                                               (HW Layer)
    71   'new_classoutput'       Classification Output        crossentropyex with 'MathWorks Cap' and 4 other classes               (SW Layer)
                                                                                                                                  
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'new_classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: conv1>>pool1 ...
### Compiling layer group: conv1>>pool1 ... complete.
### Compiling layer group: res2a_branch2a>>res2a_branch2b ...
### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete.
### Compiling layer group: res2b_branch2a>>res2b_branch2b ...
### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete.
### Compiling layer group: res3a_branch1 ...
### Compiling layer group: res3a_branch1 ... complete.
### Compiling layer group: res3a_branch2a>>res3a_branch2b ...
### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete.
### Compiling layer group: res3b_branch2a>>res3b_branch2b ...
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### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete.
### Compiling layer group: res4a_branch1 ...
### Compiling layer group: res4a_branch1 ... complete.
### Compiling layer group: res4a_branch2a>>res4a_branch2b ...
### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete.
### Compiling layer group: res4b_branch2a>>res4b_branch2b ...
### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete.
### Compiling layer group: res5a_branch1 ...
### Compiling layer group: res5a_branch1 ... complete.
### Compiling layer group: res5a_branch2a>>res5a_branch2b ...
### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete.
### Compiling layer group: res5b_branch2a>>res5b_branch2b ...
### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete.
### Compiling layer group: pool5 ...
### Compiling layer group: pool5 ... complete.
### Compiling layer group: new_fc ...
### Compiling layer group: new_fc ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "12.0 MB"       
    "OutputResultOffset"        "0x00c00000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x01000000"     "4.0 MB"        
    "SystemBufferOffset"        "0x01400000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03000000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x03400000"     "16.0 MB"       
    "FCWeightDataOffset"        "0x04400000"     "4.0 MB"        
    "EndOffset"                 "0x04800000"     "Total: 72.0 MB"

### Network compilation complete.

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 20-Jan-2022 08:46:40
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 20-Jan-2022 08:46:40
### Finished writing input activations.
### Running in multi-frame mode with 20 inputs.

              Deep Learning Processor Bitstream Build Info

Resource                   Utilized           Total        Percentage
------------------        ----------      ------------    ------------
LUTs (CLB/ALM)*              248190            274080           90.55
DSPs                            384              2520           15.24
Block RAM                       581               912           63.71
* LUT count represents Configurable Logic Block(CLB) utilization in Xilinx devices and Adaptive Logic Module (ALM) utilization in Intel devices.

### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' of type 'ImageInputLayer' is split into an image input layer 'data', an addition layer 'data_norm_add', and a multiplication layer 'data_norm' for hardware normalization.
### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'new_classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
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              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   23871185                  0.10851                       1           23871185              9.2
    ____data_norm_add       210750                  0.00096 
    ____data_norm           210750                  0.00096 
    ____conv1              2165372                  0.00984 
    ____pool1               646226                  0.00294 
    ____res2a_branch2a      966221                  0.00439 
    ____res2a_branch2b      966221                  0.00439 
    ____res2a               210750                  0.00096 
    ____res2b_branch2a      966221                  0.00439 
    ____res2b_branch2b      966221                  0.00439 
    ____res2b               210750                  0.00096 
    ____res3a_branch1       540749                  0.00246 
    ____res3a_branch2a      763860                  0.00347 
    ____res3a_branch2b      919117                  0.00418 
    ____res3a               105404                  0.00048 
    ____res3b_branch2a      919117                  0.00418 
    ____res3b_branch2b      919117                  0.00418 
    ____res3b               105404                  0.00048 
    ____res4a_branch1       509261                  0.00231 
    ____res4a_branch2a      509261                  0.00231 
    ____res4a_branch2b      905421                  0.00412 
    ____res4a                52724                  0.00024 
    ____res4b_branch2a      905421                  0.00412 
    ____res4b_branch2b      905421                  0.00412 
    ____res4b                52724                  0.00024 
    ____res5a_branch1      1046605                  0.00476 
    ____res5a_branch2a     1046605                  0.00476 
    ____res5a_branch2b     2005197                  0.00911 
    ____res5a                26368                  0.00012 
    ____res5b_branch2a     2005197                  0.00911 
    ____res5b_branch2b     2005197                  0.00911 
    ____res5b                26368                  0.00012 
    ____pool5                54594                  0.00025 
    ____new_fc               22571                  0.00010 
 * The clock frequency of the DL processor is: 220MHz

              Deep Learning Processor Bitstream Build Info

Resource                   Utilized           Total        Percentage
------------------        ----------      ------------    ------------
LUTs (CLB/ALM)*              168836            274080           61.60
DSPs                            800              2520           31.75
Block RAM                       453               912           49.67
* LUT count represents Configurable Logic Block(CLB) utilization in Xilinx devices and Adaptive Logic Module (ALM) utilization in Intel devices.

### Finished writing input activations.
### Running single input activation.

prediction_FPGA = struct with fields:
       NumSamples: 20
    MetricResults: [1×1 struct]
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       Statistics: [2×7 table]

prediction_FPGA.Statistics.FramesPerSecond

ans = 2×1

    9.2161
   33.8157

The first number is the frames per second performance for the single data type network and the
second number is the frames per second performance for the quantized network.
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Classify ECG Signals Using DAG Network Deployed to FPGA

This example shows how to classify human electrocardiogram (ECG) signals by deploying a transfer
learning trained SqueezeNet network trainedSN to a Xilinx Zynq Ultrascale+ ZCU102 board.

Required Products

For this example, you need:

• Deep Learning Toolbox ™
• Image Processing Toolbox ™
• Wavelet Toolbox ™
• Deep Learning HDL Toolbox ™
• Deep Learning HDL Toolbox ™ Support Package for Xilinx FPGA and SoC Devices
• Xilinx Zynq Ultrascale+ MPSoC ZCu102

Download Data

Download the data from the GitHub repository. To download the data from the website, click Clone
and select Download ZIP. Save the file physionet_ECG_data-main.zip in a folder where you
have write permission.

After downloading the data from GitHub, unzip the file in your temporary directory.

unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir);

The ECG data is classified into these labels:

• persons with cardiac arrhythmia (ARR)
• persons with congestive heart failure (CHF)
• persons with normal sinus rhythms (NSR)

The data is collected from these sources:

• MIT-BIH Arrhythmia Database [3][7]
• MIT-BIH Normal Sinus Rhythm Database [3]
• BIDMC Congestive Heart Failure Database [1][3]

Unzipping creates the folder physionet-ECG_data-master in your temporary directory.

Unzip ECGData.zip in physionet-ECG_data-master. Load the ECGData.mat data file into your
MATLAB workspace.

unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'physionet_ECG_data-main'))
load(fullfile(tempdir,'physionet_ECG_data-main','ECGData.mat'))

Create a folder called dataDir inside the ECG data directory and then create three directories called
ARR, CHF, and NSR inside dataDir by using the helperCreateECGDirectories function. You can
find the source code for this helper function in the Supporting Functions section at the end of this
example.
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% parentDir = tempdir;
parentDir = pwd;
dataDir = 'data';
helperCreateECGDirectories(ECGData,parentDir,dataDir);

Plot an ECG that represents each ECG category by using the helperPlotReps helper function. does
this. You can find the source code for this helper function in the Supporting Functions section at the
end of this example.

helperPlotReps(ECGData)

Create Time-Frequency Representations

After making the folders, create time-frequency representations of the ECG signals. Creating time-
frequency representations helps with feature extraction. These representations are called
scalograms. A scalogram is the absolute value of the continuous wavelet transform (CWT) coefficients
of a signal. Create a CWT filter bank using cwtfilterbank (Wavelet Toolbox) (Wavelet Toolbox) for a
signal with 1000 samples.

Fs =128;
fb = cwtfilterbank(SignalLength=1000,...
    SamplingFrequency=Fs,...
    VoicesPerOctave=12);
sig = ECGData.Data(1,1:1000);
[cfs,frq] = wt(fb,sig);
t = (0:999)/Fs;figure;pcolor(t,frq,abs(cfs))
set(gca,'yscale','log');shading interp;axis tight;
title('Scalogram');xlabel('Time (s)');ylabel('Frequency (Hz)')
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Use the helperCreateRGBfromTF helper function to create the scalograms as RGB images and
write them to the appropriate subdirectory in dataDir. The source code for this helper function is in
the Supporting Functions section at the end of this example. To be compatible with the SqueezeNet
architecture, each RGB image is an array of size 227-by-227-by-3.

helperCreateRGBfromTF(ECGData,parentDir,dataDir)

Divide into Training and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An
image datastore enables you to store large image data, including data that does not fit in memory,
and efficiently read batches of images during training of a CNN.

allImages = imageDatastore(fullfile(parentDir,dataDir),...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Randomly divide the images into two groups. Use 80% of the images for training, and the remainder
for validation. For purposes of reproducibility, we set the random seed to the default value.

rng default
[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,'randomized');
disp(['Number of training images: ',num2str(numel(imgsTrain.Files))]);
disp(['Number of validation images: ',num2str(numel(imgsValidation.Files))]);
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Load Transfer Learning Trained Network

Load the transfer learning trained SqueezeNet network trainedSN. To create the trainedSN
network, see “Classify Time Series Using Wavelet Analysis and Deep Learning”.

load('trainedSN.mat');

Configure FPGA Board Interface

Configure the FPGA board interface for the deep learning network deployment and MATLAB
communication by using the dlhdl.Target class to create a target object with a custom name for
your target device and an interface to connect your target device to the host computer. To use
JTAG,Install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

hTarget = dlhdl.Target('Xilinx',Interface="Ethernet");

Prepare trainedSN Network for Deployment

Prepare the trainedSN network for deployment by using the dlhdl.Workflow class to create an
object. When you create the object, specify the network and the bitstream name. Specify trainedSN
as the network. Make sure that the bitstream name matches the data type and the FPGA board that
you are targeting. In this example, the target FPGA board is the Xilinx ZCU102 SoC board. The
bitstream uses a single data type.

hW=dlhdl.Workflow(Network=trainedSN,Bitstream='zcu102_single',Target=hTarget)

hW = 
  Workflow with properties:

            Network: [1×1 DAGNetwork]
          Bitstream: 'zcu102_single'
    ProcessorConfig: []
             Target: [1×1 dnnfpga.hardware.TargetEthernet]

Generate Weights, Biases, and Instructions

Generate weights, biases, and instructions for the trainedSN network by using the compile
method of the dlhdl.Workflow object.

dn = hW.compile          

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### The network includes the following layers:
     1   'data'                    Image Input                  227×227×3 images with 'zerocenter' normalization                     (SW Layer)
     2   'conv1'                   Convolution                  64 3×3×3 convolutions with stride [2  2] and padding [0  0  0  0]    (HW Layer)
     3   'relu_conv1'              ReLU                         ReLU                                                                 (HW Layer)
     4   'pool1'                   Max Pooling                  3×3 max pooling with stride [2  2] and padding [0  0  0  0]          (HW Layer)
     5   'fire2-squeeze1x1'        Convolution                  16 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
     6   'fire2-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
     7   'fire2-expand1x1'         Convolution                  64 1×1×16 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
     8   'fire2-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
     9   'fire2-expand3x3'         Convolution                  64 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
    10   'fire2-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    11   'fire2-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
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    12   'fire3-squeeze1x1'        Convolution                  16 1×1×128 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    13   'fire3-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    14   'fire3-expand1x1'         Convolution                  64 1×1×16 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    15   'fire3-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    16   'fire3-expand3x3'         Convolution                  64 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
    17   'fire3-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    18   'fire3-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    19   'pool3'                   Max Pooling                  3×3 max pooling with stride [2  2] and padding [0  1  0  1]          (HW Layer)
    20   'fire4-squeeze1x1'        Convolution                  32 1×1×128 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    21   'fire4-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    22   'fire4-expand1x1'         Convolution                  128 1×1×32 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    23   'fire4-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    24   'fire4-expand3x3'         Convolution                  128 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    25   'fire4-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    26   'fire4-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    27   'fire5-squeeze1x1'        Convolution                  32 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    28   'fire5-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    29   'fire5-expand1x1'         Convolution                  128 1×1×32 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    30   'fire5-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    31   'fire5-expand3x3'         Convolution                  128 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    32   'fire5-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    33   'fire5-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    34   'pool5'                   Max Pooling                  3×3 max pooling with stride [2  2] and padding [0  1  0  1]          (HW Layer)
    35   'fire6-squeeze1x1'        Convolution                  48 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    36   'fire6-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    37   'fire6-expand1x1'         Convolution                  192 1×1×48 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    38   'fire6-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    39   'fire6-expand3x3'         Convolution                  192 3×3×48 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'fire6-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    41   'fire6-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    42   'fire7-squeeze1x1'        Convolution                  48 1×1×384 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    43   'fire7-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    44   'fire7-expand1x1'         Convolution                  192 1×1×48 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    45   'fire7-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    46   'fire7-expand3x3'         Convolution                  192 3×3×48 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    47   'fire7-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    48   'fire7-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    49   'fire8-squeeze1x1'        Convolution                  64 1×1×384 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    50   'fire8-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    51   'fire8-expand1x1'         Convolution                  256 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    52   'fire8-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    53   'fire8-expand3x3'         Convolution                  256 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    54   'fire8-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    55   'fire8-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    56   'fire9-squeeze1x1'        Convolution                  64 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    57   'fire9-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    58   'fire9-expand1x1'         Convolution                  256 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    59   'fire9-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    60   'fire9-expand3x3'         Convolution                  256 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    61   'fire9-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    62   'fire9-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    63   'new_dropout'             Dropout                      60% dropout                                                          (HW Layer)
    64   'new_conv'                Convolution                  3 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    65   'relu_conv10'             ReLU                         ReLU                                                                 (HW Layer)
    66   'pool10'                  2-D Global Average Pooling   2-D global average pooling                                           (HW Layer)
    67   'prob'                    Softmax                      softmax                                                              (HW Layer)
    68   'new_classoutput'         Classification Output        crossentropyex with 'ARR' and 2 other classes                        (SW Layer)
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### Notice: The layer 'data' of type 'ImageInputLayer' is split into an image input layer 'data' and an addition layer 'data_norm' for normalization on hardware.
### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'new_classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: conv1>>fire2-relu_squeeze1x1 ...
### Compiling layer group: conv1>>fire2-relu_squeeze1x1 ... complete.
### Compiling layer group: fire2-expand1x1>>fire2-relu_expand1x1 ...
### Compiling layer group: fire2-expand1x1>>fire2-relu_expand1x1 ... complete.
### Compiling layer group: fire2-expand3x3>>fire2-relu_expand3x3 ...
### Compiling layer group: fire2-expand3x3>>fire2-relu_expand3x3 ... complete.
### Compiling layer group: fire3-squeeze1x1>>fire3-relu_squeeze1x1 ...
### Compiling layer group: fire3-squeeze1x1>>fire3-relu_squeeze1x1 ... complete.
### Compiling layer group: fire3-expand1x1>>fire3-relu_expand1x1 ...
### Compiling layer group: fire3-expand1x1>>fire3-relu_expand1x1 ... complete.
### Compiling layer group: fire3-expand3x3>>fire3-relu_expand3x3 ...
### Compiling layer group: fire3-expand3x3>>fire3-relu_expand3x3 ... complete.
### Compiling layer group: pool3>>fire4-relu_squeeze1x1 ...
### Compiling layer group: pool3>>fire4-relu_squeeze1x1 ... complete.
### Compiling layer group: fire4-expand1x1>>fire4-relu_expand1x1 ...
### Compiling layer group: fire4-expand1x1>>fire4-relu_expand1x1 ... complete.
### Compiling layer group: fire4-expand3x3>>fire4-relu_expand3x3 ...
### Compiling layer group: fire4-expand3x3>>fire4-relu_expand3x3 ... complete.
### Compiling layer group: fire5-squeeze1x1>>fire5-relu_squeeze1x1 ...
### Compiling layer group: fire5-squeeze1x1>>fire5-relu_squeeze1x1 ... complete.
### Compiling layer group: fire5-expand1x1>>fire5-relu_expand1x1 ...
### Compiling layer group: fire5-expand1x1>>fire5-relu_expand1x1 ... complete.
### Compiling layer group: fire5-expand3x3>>fire5-relu_expand3x3 ...
### Compiling layer group: fire5-expand3x3>>fire5-relu_expand3x3 ... complete.
### Compiling layer group: pool5>>fire6-relu_squeeze1x1 ...
### Compiling layer group: pool5>>fire6-relu_squeeze1x1 ... complete.
### Compiling layer group: fire6-expand1x1>>fire6-relu_expand1x1 ...
### Compiling layer group: fire6-expand1x1>>fire6-relu_expand1x1 ... complete.
### Compiling layer group: fire6-expand3x3>>fire6-relu_expand3x3 ...
### Compiling layer group: fire6-expand3x3>>fire6-relu_expand3x3 ... complete.
### Compiling layer group: fire7-squeeze1x1>>fire7-relu_squeeze1x1 ...
### Compiling layer group: fire7-squeeze1x1>>fire7-relu_squeeze1x1 ... complete.
### Compiling layer group: fire7-expand1x1>>fire7-relu_expand1x1 ...
### Compiling layer group: fire7-expand1x1>>fire7-relu_expand1x1 ... complete.
### Compiling layer group: fire7-expand3x3>>fire7-relu_expand3x3 ...
### Compiling layer group: fire7-expand3x3>>fire7-relu_expand3x3 ... complete.
### Compiling layer group: fire8-squeeze1x1>>fire8-relu_squeeze1x1 ...
### Compiling layer group: fire8-squeeze1x1>>fire8-relu_squeeze1x1 ... complete.
### Compiling layer group: fire8-expand1x1>>fire8-relu_expand1x1 ...
### Compiling layer group: fire8-expand1x1>>fire8-relu_expand1x1 ... complete.
### Compiling layer group: fire8-expand3x3>>fire8-relu_expand3x3 ...
### Compiling layer group: fire8-expand3x3>>fire8-relu_expand3x3 ... complete.
### Compiling layer group: fire9-squeeze1x1>>fire9-relu_squeeze1x1 ...
### Compiling layer group: fire9-squeeze1x1>>fire9-relu_squeeze1x1 ... complete.
### Compiling layer group: fire9-expand1x1>>fire9-relu_expand1x1 ...
### Compiling layer group: fire9-expand1x1>>fire9-relu_expand1x1 ... complete.
### Compiling layer group: fire9-expand3x3>>fire9-relu_expand3x3 ...
### Compiling layer group: fire9-expand3x3>>fire9-relu_expand3x3 ... complete.
### Compiling layer group: new_conv>>pool10 ...
### Compiling layer group: new_conv>>pool10 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________
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    "InputDataOffset"           "0x00000000"     "24.0 MB"       
    "OutputResultOffset"        "0x01800000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x01c00000"     "4.0 MB"        
    "SystemBufferOffset"        "0x02000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x04000000"     "12.0 MB"       
    "EndOffset"                 "0x04c00000"     "Total: 76.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {{}  [-24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 … ]}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 hardware, run the deploy function of the
dlhdl.Workflow

object. This function uses the output of the compile function to program the FPGA board by using the
programming file. It also downloads the network weights and biases. The deploy function starts
programming the FPGA device, displays progress messages, and the time it takes to deploy the
network.

hW.deploy

### Programming FPGA Bitstream using Ethernet...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming FPGA device on Xilinx SoC hardware board at 192.168.1.101...
### Copying FPGA programming files to SD card...
### Setting FPGA bitstream and devicetree for boot...
# Copying Bitstream zcu102_single.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/zcu102_single.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'
### Rebooting Xilinx SoC at 192.168.1.101...
### Reboot may take several seconds...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 28-Apr-2022 15:33:54

Load Image for Prediction and Run Prediction

Load an image by randomly selecting an image from the validation data store.

idx=randi(32);
testim=readimage(imgsValidation,idx);
imshow(testim)
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Execute the predict method on the dlhdl.Workflow object and then show the label in the MATLAB
command window.

[YPred1,probs1] = classify(trainedSN,testim);
accuracy1 = (YPred1==imgsValidation.Labels);
[YPred2,probs2] = hW.predict(single(testim),'profile','on');

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    9253245                  0.04206                       1            9257253             23.8
    data_norm               361047                  0.00164 
    conv1                   672559                  0.00306 
    pool1                   509079                  0.00231 
    fire2-squeeze1x1        308258                  0.00140 
    fire2-expand1x1         305646                  0.00139 
    fire2-expand3x3         305085                  0.00139 
    fire3-squeeze1x1        627799                  0.00285 
    fire3-expand1x1         305241                  0.00139 
    fire3-expand3x3         305256                  0.00139 
    pool3                   286627                  0.00130 
    fire4-squeeze1x1        264151                  0.00120 
    fire4-expand1x1         264600                  0.00120 
    fire4-expand3x3         264567                  0.00120 
    fire5-squeeze1x1        734588                  0.00334 
    fire5-expand1x1         264575                  0.00120 
    fire5-expand3x3         264719                  0.00120 
    pool5                   219725                  0.00100 
    fire6-squeeze1x1        194605                  0.00088 
    fire6-expand1x1         144199                  0.00066 
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    fire6-expand3x3         144819                  0.00066 
    fire7-squeeze1x1        288819                  0.00131 
    fire7-expand1x1         144285                  0.00066 
    fire7-expand3x3         144841                  0.00066 
    fire8-squeeze1x1        368116                  0.00167 
    fire8-expand1x1         243691                  0.00111 
    fire8-expand3x3         243738                  0.00111 
    fire9-squeeze1x1        488338                  0.00222 
    fire9-expand1x1         243654                  0.00111 
    fire9-expand3x3         243683                  0.00111 
    new_conv                 93849                  0.00043 
    pool10                    2751                  0.00001 
 * The clock frequency of the DL processor is: 220MHz

[val,idx]= max(YPred2);
trainedSN.Layers(end).ClassNames{idx}

ans = 
'ARR'
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Supporting Functions

helperCreateECGDataDirectories creates a data directory inside a parent directory, then creates
three subdirectories inside the data directory. The subdirectories are named after each class of ECG
signal found in ECGData.

function helperCreateECGDirectories(ECGData,parentFolder,dataFolder)

rootFolder = parentFolder;
localFolder = dataFolder;
mkdir(fullfile(rootFolder,localFolder))

folderLabels = unique(ECGData.Labels);
for i = 1:numel(folderLabels)
    mkdir(fullfile(rootFolder,localFolder,char(folderLabels(i))));
end
end

helperPlotReps plots the first thousand samples of a representative of each class of ECG signal
found in ECGData.

function helperPlotReps(ECGData)

folderLabels = unique(ECGData.Labels);

for k=1:3
    ecgType = folderLabels{k};
    ind = find(ismember(ECGData.Labels,ecgType));
    subplot(3,1,k)
    plot(ECGData.Data(ind(1),1:1000));
    grid on
    title(ecgType)
end
end

helperCreateRGBfromTF uses cwtfilterbank (Wavelet Toolbox) to obtain the continuous wavelet
transform of the ECG signals and generates the scalograms from the wavelet coefficients. The helper
function resizes the scalograms and writes them to disk as jpeg images.

function helperCreateRGBfromTF(ECGData,parentFolder,childFolder)

imageRoot = fullfile(parentFolder,childFolder);

data = ECGData.Data;
labels = ECGData.Labels;

[~,signalLength] = size(data);

fb = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
r = size(data,1);

for ii = 1:r
    cfs = abs(fb.wt(data(ii,:)));
    im = ind2rgb(im2uint8(rescale(cfs)),jet(128));
    
    imgLoc = fullfile(imageRoot,char(labels(ii)));
    imFileName = strcat(char(labels(ii)),'_',num2str(ii),'.jpg');
    imwrite(imresize(im,[227 227]),fullfile(imgLoc,imFileName));
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end
end
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Prototype and Verify Deep Learning Networks Without Target
Hardware

Rapidly prototype your custom deep learning network and bitstream by visualizing intermediate layer
activation results and verifying prediction accuracy without target hardware by emulating the
network and bitstream. To emulate the network and bitstream, create a dlhdl.Simulator object.
Use the dlhdl.Simulator object to:

• Retrieve intermediate layer results by using the activations function.
• Verify prediction accuracy by using the predict function.

In this example, retrieve the intermediate layer activation results and verify the prediction accuracy
for the ResNet-18 network and deep learning processor configuration for the zcu102_single
bitstream.

Prerequisites

• Deep Learning Toolbox ™
• Deep Learning HDL Toolbox ™
• Deep Learning Toolbox Model for ResNet-18 Network
• Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices
• Image Processing Toolbox ™
• MATLAB Coder Interface for Deep learning Libraries™

Load Pretrained SeriesNetwork

To load the pretrained network ResNet-18, enter:

snet = resnet18;

To view the layers of the pretrained network, enter:

analyzeNetwork(snet);

The first layer, the image input layer, requires input images of size 224-by-224-by-3, where 3 is the
number of color channels.

inputSize = snet.Layers(1).InputSize;

Define Training and Validation Data Sets

This example uses the MathWorks MerchData data set. This is a small data set containing 75 images
of MathWorks merchandise, belonging to five different classes (cap, cube, playing cards, screwdriver,
and torch).

curDir = pwd;
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
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Replace Final Layers

The fully connected layer and the classification layer of the pretrained network net are configured
for 1000 classes. These two layers fc1000 and ClassificationLayer_predictions in
ResNet-18 contain information on how to combine the features that the network extracts into class
probabilities and predicted labels. These layers must be fine-tuned for the new classification problem.
Extract all the layers, except the last two layers, from the pretrained network.

lgraph = layerGraph(snet)

lgraph = 
  LayerGraph with properties:

         Layers: [71×1 nnet.cnn.layer.Layer]
    Connections: [78×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

numClasses = numel(categories(imdsTrain.Labels))

numClasses = 5

newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
lgraph = replaceLayer(lgraph,'fc1000',newLearnableLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);

Train Network

The network requires input images of size 224-by-224-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images, such as randomly
flipping the training images along the vertical axis and randomly translating them up to 30 pixels
horizontally and vertically. Data augmentation helps prevent the network from overfitting and
memorizing the exact details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
'DataAugmentation',imageAugmenter);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. Specify the mini-batch size and validation data. The
software validates the network for every ValidationFrequency iteration during training.
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options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',6, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',3, ...
'Verbose',false, ...
'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available (requires Parallel Computing Toolbox™ and a supported GPU device. See
“GPU Computing Requirements” (Parallel Computing Toolbox)). Otherwise, the network uses a CPU
(requires MATLAB Coder Interface for Deep learning Libraries™). You can also specify the execution
environment by using the 'ExecutionEnvironment' name-value argument of trainingOptions.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);

Retrieve Deep Learning Processor Configuration

Use the dlhdl.ProcessorConfig object to retrieve the deep learning processor configuration for
the zcu102_single bitstream.

hPC = dlhdl.ProcessorConfig('Bitstream','zcu102_single');

Create Simulator Object

Create a dlhdl.Simulator object with ResNet-18 as the network and hPC as the
ProcessorConfig object.

simObj = dlhdl.Simulator('Network',netTransfer,'ProcessorConfig',hPC);
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### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
Compiling leg: conv1>>pool1 ...
Compiling leg: conv1>>pool1 ... complete.
Compiling leg: res2a_branch2a>>res2a_branch2b ...
Compiling leg: res2a_branch2a>>res2a_branch2b ... complete.
Compiling leg: res2b_branch2a>>res2b_branch2b ...
Compiling leg: res2b_branch2a>>res2b_branch2b ... complete.
Compiling leg: res3a_branch1 ...
Compiling leg: res3a_branch1 ... complete.
Compiling leg: res3a_branch2a>>res3a_branch2b ...
Compiling leg: res3a_branch2a>>res3a_branch2b ... complete.
Compiling leg: res3b_branch2a>>res3b_branch2b ...
Compiling leg: res3b_branch2a>>res3b_branch2b ... complete.
Compiling leg: res4a_branch1 ...
Compiling leg: res4a_branch1 ... complete.
Compiling leg: res4a_branch2a>>res4a_branch2b ...
Compiling leg: res4a_branch2a>>res4a_branch2b ... complete.
Compiling leg: res4b_branch2a>>res4b_branch2b ...
Compiling leg: res4b_branch2a>>res4b_branch2b ... complete.
Compiling leg: res5a_branch1 ...
Compiling leg: res5a_branch1 ... complete.
Compiling leg: res5a_branch2a>>res5a_branch2b ...
Compiling leg: res5a_branch2a>>res5a_branch2b ... complete.
Compiling leg: res5b_branch2a>>res5b_branch2b ...
Compiling leg: res5b_branch2a>>res5b_branch2b ... complete.
Compiling leg: pool5 ...
Compiling leg: pool5 ... complete.
Compiling leg: new_fc ...
Compiling leg: new_fc ... complete.

Load Image for Prediction and Intermediate Layer Activation Results

Load the example image. Save it's size for future use.

imgFile = fullfile(pwd,'MerchData','MathWorks Cube','Mathworks cube_0.jpg');
inputImg = imresize(imread(imgFile),inputSize(1:2));
imshow(inputImg)
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Show Activations of First Maxpool Layer

Investigate features by observing which areas in the convolution layers activate on an image.
Compare that image to the corresponding areas in the original images. Each layer of a convolutional
neural network consists of many 2-D arrays called channels. Pass the image through the network and
examine the output activations of the pool1 layer.

act1 = simObj.activations(single(inputImg),'pool1');

The activations are returned as a 3-D array, with the third dimension indexing the channel on the
pool1 layer. To show these activations by using the imtile function, reshape the array to 4-D. The
third dimension in the input to imtile represents the image color. Set the third dimension to have
size 1 because the activations do not have color. The fourth dimension indexes the channel.

sz = size(act1);
act1 = reshape(act1,[sz(1) sz(2) 1 sz(3)]);

Display the activations. Each activation can take any value, so normalize the output by using the
mat2gray. All activations are scaled so that the minimum activation is 0 and the maximum activation
is 1. Display the 64 images on an 8-by-8 grid, one for each channel in the layer.

I = imtile(mat2gray(act1),'GridSize',[8 8]);
imshow(I)
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Find Strongest Activation Channel

Find the strongest channels by programmatically investigating channels with large activations. Find
the channel that has the largest activation by using the max function, resize the channel output, and
display the activations.

[maxValue,maxValueIndex] = max(max(max(act1)));
act1chMax = act1(:,:,:,maxValueIndex);
act1chMax = mat2gray(act1chMax);
act1chMax = imresize(act1chMax,inputSize(1:2));

I = imtile({inputImg,act1chMax});
imshow(I)
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Compare the strongest activation channel image to the original image. This channel activates on
edges. It activates positively on light left/dark right edges and negatively on dark left/light right
edges.

Verify Prediction Results

Verify and display the prediction results of the dlhdl.Simulator object by using the predict
function.

prediction = simObj.predict(single(inputImg));
[val, idx] = max(prediction);
netTransfer.Layers(end).ClassNames{idx}

ans = 
'MathWorks Cube'

See Also
dlhdl.Simulator | activations | predict | dlhdl.ProcessorConfig
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Classify Images on FPGA by Using Quantized GoogLeNet
Network

This example show how to use the Deep Learning HDL Toolbox™ to deploy a quantized GoogleNet
network to classify an image. The example uses the pretrained GoogLeNet network to demonstrate
transfer learning, quantization, and deployment for the quantized network. Quantization helps reduce
the memory requirement of a deep neural network by quantizing weights, biases and activations of
network layers to 8-bit scaled integer data types. Use MATLAB® to retrieve the prediction results.

Deploy the quantized GoogLeNet network by creating a dlhdl.Workflow object. Use the
dlhdl.Workflow object to:

• Generate a list of instructions, weights and biases by using the compile method.
• Generate a programming file for the FPGA by using the deploy method.
• Retrieve the network prediction results and performance by using the predict method.

GoogLeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input, and then
outputs a label for the object in the image together with the probabilities for each of the object
categories.

Prerequisites

• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox Model for GoogLeNet Network
• Deep Learning HDL Toolbox™ Support Package for Intel FPGA and SoC
• Image Processing Toolbox™
• Intel Arria10 SoC development kit
• Deep Learning Toolbox™ Model Quantization Library support package.
• MATLAB Coder Interface for Deep learning Libraries

Transfer Learning Using GoogLeNet

To perform classification on a new set of images, you fine-tune a pretrained GoogLeNet convolutional
neural network by transfer learning. In transfer learning, you can take a pretrained network and use
it as a starting point to learn a new task. Fine-tuning a network with transfer learning is usually much
faster and easier than training a network with randomly initialized weights from scratch. You can
quickly transfer learned features to a new task using a smaller number of training images.

Load Pretrained DAG Network

Load the pretrained DAG network, GoogLeNet.

net = googlenet;

Use the analyzeNetwork function to obtain information about the network layers.

analyzeNetwork(net);
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The first layer, the image input layer, requires input images of size 224-by-224-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   224   224     3

Define Training and Validation Data Sets

This example uses the MathWorks MerchData data set. This is a small data set containing 75 images
of MathWorks merchandise, belonging to five different classes (cap, cube, playing cards, screwdriver,
and torch).

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

This data set now contains 55 training images and 20 validation images. Display some sample images.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end
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Replace Final Layers

The fully connected layer and classification layer of the pretrained network net are configured for
1000 classes. These two layers, loss3-classifier and output in GoogLeNet, contain information
on how to combine the features that the network extracts into class probabilities, a loss value, and
predicted labels. To retrain a pretrained network to classify new images, replace these two layers
with new layers adapted to the new data set.

Extract the layer graph from the trained network.

lgraph = layerGraph(net)

lgraph = 
  LayerGraph with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]
     InputNames: {'data'}
    OutputNames: {'output'}

Replace the fully connected layer with a new fully connected layer that has number of outputs equal
to the number of classes. To make learning faster in the new layers than in the transferred layers,
increase the WeightLearnRateFactor and BiasLearnRateFactor values of the fully connected
layer.

numClasses = numel(categories(imdsTrain.Labels))
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numClasses = 5

Remove 'loss3-classifier', 'prob' and 'output' layers from the lgraph.

layers = net.SortedLayers;
for i = 0:2
    lgraph = removeLayers(lgraph,layers(end-i).Name);
end

Create three new layers and add them to the lgraph. Ensure the transferred and new layers are
properly connected together in the lgraph.

newLayers = [
    fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20,'Name','newFC')
    softmaxLayer('Name','newProb')
    classificationLayer('Name','newClassOutput',"Classes","auto")];

lgraph = addLayers(lgraph,newLayers);
lgraph = connectLayers(lgraph,layers(end-3).Name,'newFC');

Train Network

The network requires input images of size 224-by-224-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from over-fitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, the learning rate factors were
increased for the fully connected layer to speed up learning in the new final layers. This combination
of learning rate settings results in fast learning only in the new layers and slower learning in the
other layers. When performing transfer learning, you do not need to train for as many epochs. An
epoch is a full training cycle on the entire training data set. Specify the mini-batch size to be 11. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',11, ...
    'MaxEpochs',5, ...
    'InitialLearnRate',2e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
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    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available (requires Parallel Computing Toolbox™ and a supported GPU device. For more
information, see GPU Support by Release (Parallel Computing Toolbox)). Otherwise, the network uses
a CPU (requires MATLAB Coder Interface for Deep learning Libraries™). You can also specify the
execution environment by using the 'ExecutionEnvironment' name-value argument of
trainingOptions.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);

Create dlquantizer Object

Create a quantized network by using the dlquantizer object. Set the target execution environment
to FPGA..

dlQuantObj = dlquantizer(netTransfer,'ExecutionEnvironment','FPGA');

Calibrate Quantized Network

Use the calibrate function to exercise the network by using sample inputs to collect the range
information. The calibrate function exercises the network and collects the dynamic ranges for the
learnable parameters of the convolution and fully connected layers of the network.

For best quantization results, the calibration data must be a representative of actual inputs that are
predicted by the network.

dlQuantObj.calibrate(augimdsTrain);

Set Up Intel Quartus Prime Standard

Set the synthesis tool path to point to an installed Intel® Quartus® Prime Standard Edition 20.1
executable file. You must have already installed Altera® Quartus II.

% hdlsetuptoolpath('ToolName','Altera Quartus II','ToolPath','C:\intel\20.1\quartus\bin\quartus.exe');

Create Target Object

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet.

hTarget = dlhdl.Target('Intel','Interface','JTAG');

Alternatively, you can use an Ethernet interface.

% hTarget = dlhdl.Target('Intel','Interface','Ethernet');

Generate Bitstream to Run Network

The GoogleNet network consists of multiple Cross Channel Normalization layers. To support this
layer on hardware, the 'LRNBlockGeneration' property of the conv module needs to be turned on in
the bitstream used for FPGA inference. The shipping arria10soc_int8 bitstream does not have
'LRNBlockGeneration' property turned on. A new bitstream can be generated using the following
lines of code. The generated bitstream can be used along with a workflow object for inference.
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Update the processor configuration with 'LRNBlockGeneration' property turned on and
'SegmentationBlockGeneration' property turned off. Turn off 'SegmentationBlockGeneration' to fit the
Deep Learning IP on the FPGA and avoid overutilization of resources.

% hPC = dlhdl.ProcessorConfig('Bitstream', 'arria10soc_int8');
% hPC.setModuleProperty('conv', 'LRNBlockGeneration', 'on');
% hPC.setModuleProperty('conv', 'SegmentationBlockGeneration', 'off');
% dlhdl.buildProcessor(hPC)

To learn how to use the generated bitstream file, see “Generate Custom Bitstream” on page 9-2.

Create Workflow Object

Create an object of the dlhdl.Workflow class. Specify dlQuantObj as the network. Make sure to
use the generated bitstream which enables processing of Cross Channel Normalization layers on
FPGA. In this example, the target FPGA board is the Intel Arria10 SOC board and the generated
bitstream uses the int8 data type.

hW = dlhdl.Workflow('network', dlQuantObj, 'Bitstream', 'dlprocessor.sof','Target',hTarget);

Compile Workflow Object

To compile the GoogLeNet network, run the compile function of the dlhdl.Workflow object.

dn = hW.compile

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream arria10soc_int8.
### The network includes the following layers:
     1   'data'                           Image Input                   224×224×3 images with 'zerocenter' normalization                       (SW Layer)
     2   'conv1-7x7_s2'                   Convolution                   64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]      (HW Layer)
     3   'conv1-relu_7x7'                 ReLU                          ReLU                                                                   (HW Layer)
     4   'pool1-3x3_s2'                   Max Pooling                   3×3 max pooling with stride [2  2] and padding [0  1  0  1]            (HW Layer)
     5   'pool1-norm1'                    Cross Channel Normalization   cross channel normalization with 5 channels per element                (HW Layer)
     6   'conv2-3x3_reduce'               Convolution                   64 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]     (HW Layer)
     7   'conv2-relu_3x3_reduce'          ReLU                          ReLU                                                                   (HW Layer)
     8   'conv2-3x3'                      Convolution                   192 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     9   'conv2-relu_3x3'                 ReLU                          ReLU                                                                   (HW Layer)
    10   'conv2-norm2'                    Cross Channel Normalization   cross channel normalization with 5 channels per element                (HW Layer)
    11   'pool2-3x3_s2'                   Max Pooling                   3×3 max pooling with stride [2  2] and padding [0  1  0  1]            (HW Layer)
    12   'inception_3a-1x1'               Convolution                   64 1×1×192 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    13   'inception_3a-relu_1x1'          ReLU                          ReLU                                                                   (HW Layer)
    14   'inception_3a-3x3_reduce'        Convolution                   96 1×1×192 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    15   'inception_3a-relu_3x3_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    16   'inception_3a-3x3'               Convolution                   128 3×3×96 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    17   'inception_3a-relu_3x3'          ReLU                          ReLU                                                                   (HW Layer)
    18   'inception_3a-5x5_reduce'        Convolution                   16 1×1×192 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    19   'inception_3a-relu_5x5_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    20   'inception_3a-5x5'               Convolution                   32 5×5×16 convolutions with stride [1  1] and padding [2  2  2  2]     (HW Layer)
    21   'inception_3a-relu_5x5'          ReLU                          ReLU                                                                   (HW Layer)
    22   'inception_3a-pool'              Max Pooling                   3×3 max pooling with stride [1  1] and padding [1  1  1  1]            (HW Layer)
    23   'inception_3a-pool_proj'         Convolution                   32 1×1×192 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    24   'inception_3a-relu_pool_proj'    ReLU                          ReLU                                                                   (HW Layer)
    25   'inception_3a-output'            Depth concatenation           Depth concatenation of 4 inputs                                        (HW Layer)
    26   'inception_3b-1x1'               Convolution                   128 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    27   'inception_3b-relu_1x1'          ReLU                          ReLU                                                                   (HW Layer)
    28   'inception_3b-3x3_reduce'        Convolution                   128 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    29   'inception_3b-relu_3x3_reduce'   ReLU                          ReLU                                                                   (HW Layer)

10 Featured Examples

10-190



    30   'inception_3b-3x3'               Convolution                   192 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
    31   'inception_3b-relu_3x3'          ReLU                          ReLU                                                                   (HW Layer)
    32   'inception_3b-5x5_reduce'        Convolution                   32 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    33   'inception_3b-relu_5x5_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    34   'inception_3b-5x5'               Convolution                   96 5×5×32 convolutions with stride [1  1] and padding [2  2  2  2]     (HW Layer)
    35   'inception_3b-relu_5x5'          ReLU                          ReLU                                                                   (HW Layer)
    36   'inception_3b-pool'              Max Pooling                   3×3 max pooling with stride [1  1] and padding [1  1  1  1]            (HW Layer)
    37   'inception_3b-pool_proj'         Convolution                   64 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    38   'inception_3b-relu_pool_proj'    ReLU                          ReLU                                                                   (HW Layer)
    39   'inception_3b-output'            Depth concatenation           Depth concatenation of 4 inputs                                        (HW Layer)
    40   'pool3-3x3_s2'                   Max Pooling                   3×3 max pooling with stride [2  2] and padding [0  1  0  1]            (HW Layer)
    41   'inception_4a-1x1'               Convolution                   192 1×1×480 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    42   'inception_4a-relu_1x1'          ReLU                          ReLU                                                                   (HW Layer)
    43   'inception_4a-3x3_reduce'        Convolution                   96 1×1×480 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    44   'inception_4a-relu_3x3_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    45   'inception_4a-3x3'               Convolution                   208 3×3×96 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    46   'inception_4a-relu_3x3'          ReLU                          ReLU                                                                   (HW Layer)
    47   'inception_4a-5x5_reduce'        Convolution                   16 1×1×480 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    48   'inception_4a-relu_5x5_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    49   'inception_4a-5x5'               Convolution                   48 5×5×16 convolutions with stride [1  1] and padding [2  2  2  2]     (HW Layer)
    50   'inception_4a-relu_5x5'          ReLU                          ReLU                                                                   (HW Layer)
    51   'inception_4a-pool'              Max Pooling                   3×3 max pooling with stride [1  1] and padding [1  1  1  1]            (HW Layer)
    52   'inception_4a-pool_proj'         Convolution                   64 1×1×480 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    53   'inception_4a-relu_pool_proj'    ReLU                          ReLU                                                                   (HW Layer)
    54   'inception_4a-output'            Depth concatenation           Depth concatenation of 4 inputs                                        (HW Layer)
    55   'inception_4b-1x1'               Convolution                   160 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    56   'inception_4b-relu_1x1'          ReLU                          ReLU                                                                   (HW Layer)
    57   'inception_4b-3x3_reduce'        Convolution                   112 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    58   'inception_4b-relu_3x3_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    59   'inception_4b-3x3'               Convolution                   224 3×3×112 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
    60   'inception_4b-relu_3x3'          ReLU                          ReLU                                                                   (HW Layer)
    61   'inception_4b-5x5_reduce'        Convolution                   24 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    62   'inception_4b-relu_5x5_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    63   'inception_4b-5x5'               Convolution                   64 5×5×24 convolutions with stride [1  1] and padding [2  2  2  2]     (HW Layer)
    64   'inception_4b-relu_5x5'          ReLU                          ReLU                                                                   (HW Layer)
    65   'inception_4b-pool'              Max Pooling                   3×3 max pooling with stride [1  1] and padding [1  1  1  1]            (HW Layer)
    66   'inception_4b-pool_proj'         Convolution                   64 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    67   'inception_4b-relu_pool_proj'    ReLU                          ReLU                                                                   (HW Layer)
    68   'inception_4b-output'            Depth concatenation           Depth concatenation of 4 inputs                                        (HW Layer)
    69   'inception_4c-1x1'               Convolution                   128 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    70   'inception_4c-relu_1x1'          ReLU                          ReLU                                                                   (HW Layer)
    71   'inception_4c-3x3_reduce'        Convolution                   128 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    72   'inception_4c-relu_3x3_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    73   'inception_4c-3x3'               Convolution                   256 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
    74   'inception_4c-relu_3x3'          ReLU                          ReLU                                                                   (HW Layer)
    75   'inception_4c-5x5_reduce'        Convolution                   24 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    76   'inception_4c-relu_5x5_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    77   'inception_4c-5x5'               Convolution                   64 5×5×24 convolutions with stride [1  1] and padding [2  2  2  2]     (HW Layer)
    78   'inception_4c-relu_5x5'          ReLU                          ReLU                                                                   (HW Layer)
    79   'inception_4c-pool'              Max Pooling                   3×3 max pooling with stride [1  1] and padding [1  1  1  1]            (HW Layer)
    80   'inception_4c-pool_proj'         Convolution                   64 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    81   'inception_4c-relu_pool_proj'    ReLU                          ReLU                                                                   (HW Layer)
    82   'inception_4c-output'            Depth concatenation           Depth concatenation of 4 inputs                                        (HW Layer)
    83   'inception_4d-1x1'               Convolution                   112 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    84   'inception_4d-relu_1x1'          ReLU                          ReLU                                                                   (HW Layer)
    85   'inception_4d-3x3_reduce'        Convolution                   144 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    86   'inception_4d-relu_3x3_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    87   'inception_4d-3x3'               Convolution                   288 3×3×144 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
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    88   'inception_4d-relu_3x3'          ReLU                          ReLU                                                                   (HW Layer)
    89   'inception_4d-5x5_reduce'        Convolution                   32 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    90   'inception_4d-relu_5x5_reduce'   ReLU                          ReLU                                                                   (HW Layer)
    91   'inception_4d-5x5'               Convolution                   64 5×5×32 convolutions with stride [1  1] and padding [2  2  2  2]     (HW Layer)
    92   'inception_4d-relu_5x5'          ReLU                          ReLU                                                                   (HW Layer)
    93   'inception_4d-pool'              Max Pooling                   3×3 max pooling with stride [1  1] and padding [1  1  1  1]            (HW Layer)
    94   'inception_4d-pool_proj'         Convolution                   64 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]    (HW Layer)
    95   'inception_4d-relu_pool_proj'    ReLU                          ReLU                                                                   (HW Layer)
    96   'inception_4d-output'            Depth concatenation           Depth concatenation of 4 inputs                                        (HW Layer)
    97   'inception_4e-1x1'               Convolution                   256 1×1×528 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    98   'inception_4e-relu_1x1'          ReLU                          ReLU                                                                   (HW Layer)
    99   'inception_4e-3x3_reduce'        Convolution                   160 1×1×528 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    100   'inception_4e-relu_3x3_reduce'   ReLU                          ReLU                                                                  (HW Layer)
    101   'inception_4e-3x3'               Convolution                   320 3×3×160 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    102   'inception_4e-relu_3x3'          ReLU                          ReLU                                                                  (HW Layer)
    103   'inception_4e-5x5_reduce'        Convolution                   32 1×1×528 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    104   'inception_4e-relu_5x5_reduce'   ReLU                          ReLU                                                                  (HW Layer)
    105   'inception_4e-5x5'               Convolution                   128 5×5×32 convolutions with stride [1  1] and padding [2  2  2  2]   (HW Layer)
    106   'inception_4e-relu_5x5'          ReLU                          ReLU                                                                  (HW Layer)
    107   'inception_4e-pool'              Max Pooling                   3×3 max pooling with stride [1  1] and padding [1  1  1  1]           (HW Layer)
    108   'inception_4e-pool_proj'         Convolution                   128 1×1×528 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    109   'inception_4e-relu_pool_proj'    ReLU                          ReLU                                                                  (HW Layer)
    110   'inception_4e-output'            Depth concatenation           Depth concatenation of 4 inputs                                       (HW Layer)
    111   'pool4-3x3_s2'                   Max Pooling                   3×3 max pooling with stride [2  2] and padding [0  1  0  1]           (HW Layer)
    112   'inception_5a-1x1'               Convolution                   256 1×1×832 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    113   'inception_5a-relu_1x1'          ReLU                          ReLU                                                                  (HW Layer)
    114   'inception_5a-3x3_reduce'        Convolution                   160 1×1×832 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    115   'inception_5a-relu_3x3_reduce'   ReLU                          ReLU                                                                  (HW Layer)
    116   'inception_5a-3x3'               Convolution                   320 3×3×160 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    117   'inception_5a-relu_3x3'          ReLU                          ReLU                                                                  (HW Layer)
    118   'inception_5a-5x5_reduce'        Convolution                   32 1×1×832 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    119   'inception_5a-relu_5x5_reduce'   ReLU                          ReLU                                                                  (HW Layer)
    120   'inception_5a-5x5'               Convolution                   128 5×5×32 convolutions with stride [1  1] and padding [2  2  2  2]   (HW Layer)
    121   'inception_5a-relu_5x5'          ReLU                          ReLU                                                                  (HW Layer)
    122   'inception_5a-pool'              Max Pooling                   3×3 max pooling with stride [1  1] and padding [1  1  1  1]           (HW Layer)
    123   'inception_5a-pool_proj'         Convolution                   128 1×1×832 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    124   'inception_5a-relu_pool_proj'    ReLU                          ReLU                                                                  (HW Layer)
    125   'inception_5a-output'            Depth concatenation           Depth concatenation of 4 inputs                                       (HW Layer)
    126   'inception_5b-1x1'               Convolution                   384 1×1×832 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    127   'inception_5b-relu_1x1'          ReLU                          ReLU                                                                  (HW Layer)
    128   'inception_5b-3x3_reduce'        Convolution                   192 1×1×832 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    129   'inception_5b-relu_3x3_reduce'   ReLU                          ReLU                                                                  (HW Layer)
    130   'inception_5b-3x3'               Convolution                   384 3×3×192 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    131   'inception_5b-relu_3x3'          ReLU                          ReLU                                                                  (HW Layer)
    132   'inception_5b-5x5_reduce'        Convolution                   48 1×1×832 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    133   'inception_5b-relu_5x5_reduce'   ReLU                          ReLU                                                                  (HW Layer)
    134   'inception_5b-5x5'               Convolution                   128 5×5×48 convolutions with stride [1  1] and padding [2  2  2  2]   (HW Layer)
    135   'inception_5b-relu_5x5'          ReLU                          ReLU                                                                  (HW Layer)
    136   'inception_5b-pool'              Max Pooling                   3×3 max pooling with stride [1  1] and padding [1  1  1  1]           (HW Layer)
    137   'inception_5b-pool_proj'         Convolution                   128 1×1×832 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    138   'inception_5b-relu_pool_proj'    ReLU                          ReLU                                                                  (HW Layer)
    139   'inception_5b-output'            Depth concatenation           Depth concatenation of 4 inputs                                       (HW Layer)
    140   'pool5-7x7_s1'                   2-D Global Average Pooling    2-D global average pooling                                            (HW Layer)
    141   'pool5-drop_7x7_s1'              Dropout                       40% dropout                                                           (HW Layer)
    142   'newFC'                          Fully Connected               5 fully connected layer                                               (HW Layer)
    143   'newProb'                        Softmax                       softmax                                                               (HW Layer)
    144   'newClassOutput'                 Classification Output         crossentropyex with 'MathWorks Cap' and 4 other classes               (SW Layer)
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### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'newClassOutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: conv1-7x7_s2>>pool2-3x3_s2 ...
### Compiling layer group: conv1-7x7_s2>>pool2-3x3_s2 ... complete.
### Compiling layer group: inception_3a-1x1>>inception_3a-relu_1x1 ...
### Compiling layer group: inception_3a-1x1>>inception_3a-relu_1x1 ... complete.
### Compiling layer group: inception_3a-3x3_reduce>>inception_3a-relu_3x3 ...
### Compiling layer group: inception_3a-3x3_reduce>>inception_3a-relu_3x3 ... complete.
### Compiling layer group: inception_3a-5x5_reduce>>inception_3a-relu_5x5 ...
### Compiling layer group: inception_3a-5x5_reduce>>inception_3a-relu_5x5 ... complete.
### Compiling layer group: inception_3a-pool>>inception_3a-relu_pool_proj ...
### Compiling layer group: inception_3a-pool>>inception_3a-relu_pool_proj ... complete.
### Compiling layer group: inception_3b-1x1>>inception_3b-relu_1x1 ...
### Compiling layer group: inception_3b-1x1>>inception_3b-relu_1x1 ... complete.
### Compiling layer group: inception_3b-3x3_reduce>>inception_3b-relu_3x3 ...
### Compiling layer group: inception_3b-3x3_reduce>>inception_3b-relu_3x3 ... complete.
### Compiling layer group: inception_3b-5x5_reduce>>inception_3b-relu_5x5 ...
### Compiling layer group: inception_3b-5x5_reduce>>inception_3b-relu_5x5 ... complete.
### Compiling layer group: inception_3b-pool>>inception_3b-relu_pool_proj ...
### Compiling layer group: inception_3b-pool>>inception_3b-relu_pool_proj ... complete.
### Compiling layer group: pool3-3x3_s2 ...
### Compiling layer group: pool3-3x3_s2 ... complete.
### Compiling layer group: inception_4a-1x1>>inception_4a-relu_1x1 ...
### Compiling layer group: inception_4a-1x1>>inception_4a-relu_1x1 ... complete.
### Compiling layer group: inception_4a-3x3_reduce>>inception_4a-relu_3x3 ...
### Compiling layer group: inception_4a-3x3_reduce>>inception_4a-relu_3x3 ... complete.
### Compiling layer group: inception_4a-5x5_reduce>>inception_4a-relu_5x5 ...
### Compiling layer group: inception_4a-5x5_reduce>>inception_4a-relu_5x5 ... complete.
### Compiling layer group: inception_4a-pool>>inception_4a-relu_pool_proj ...
### Compiling layer group: inception_4a-pool>>inception_4a-relu_pool_proj ... complete.
### Compiling layer group: inception_4b-1x1>>inception_4b-relu_1x1 ...
### Compiling layer group: inception_4b-1x1>>inception_4b-relu_1x1 ... complete.
### Compiling layer group: inception_4b-3x3_reduce>>inception_4b-relu_3x3 ...
### Compiling layer group: inception_4b-3x3_reduce>>inception_4b-relu_3x3 ... complete.
### Compiling layer group: inception_4b-5x5_reduce>>inception_4b-relu_5x5 ...
### Compiling layer group: inception_4b-5x5_reduce>>inception_4b-relu_5x5 ... complete.
### Compiling layer group: inception_4b-pool>>inception_4b-relu_pool_proj ...
### Compiling layer group: inception_4b-pool>>inception_4b-relu_pool_proj ... complete.
### Compiling layer group: inception_4c-1x1>>inception_4c-relu_1x1 ...
### Compiling layer group: inception_4c-1x1>>inception_4c-relu_1x1 ... complete.
### Compiling layer group: inception_4c-3x3_reduce>>inception_4c-relu_3x3 ...
### Compiling layer group: inception_4c-3x3_reduce>>inception_4c-relu_3x3 ... complete.
### Compiling layer group: inception_4c-5x5_reduce>>inception_4c-relu_5x5 ...
### Compiling layer group: inception_4c-5x5_reduce>>inception_4c-relu_5x5 ... complete.
### Compiling layer group: inception_4c-pool>>inception_4c-relu_pool_proj ...
### Compiling layer group: inception_4c-pool>>inception_4c-relu_pool_proj ... complete.
### Compiling layer group: inception_4d-1x1>>inception_4d-relu_1x1 ...
### Compiling layer group: inception_4d-1x1>>inception_4d-relu_1x1 ... complete.
### Compiling layer group: inception_4d-3x3_reduce>>inception_4d-relu_3x3 ...
### Compiling layer group: inception_4d-3x3_reduce>>inception_4d-relu_3x3 ... complete.
### Compiling layer group: inception_4d-5x5_reduce>>inception_4d-relu_5x5 ...
### Compiling layer group: inception_4d-5x5_reduce>>inception_4d-relu_5x5 ... complete.
### Compiling layer group: inception_4d-pool>>inception_4d-relu_pool_proj ...
### Compiling layer group: inception_4d-pool>>inception_4d-relu_pool_proj ... complete.
### Compiling layer group: inception_4e-1x1>>inception_4e-relu_1x1 ...
### Compiling layer group: inception_4e-1x1>>inception_4e-relu_1x1 ... complete.
### Compiling layer group: inception_4e-3x3_reduce>>inception_4e-relu_3x3 ...
### Compiling layer group: inception_4e-3x3_reduce>>inception_4e-relu_3x3 ... complete.
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### Compiling layer group: inception_4e-5x5_reduce>>inception_4e-relu_5x5 ...
### Compiling layer group: inception_4e-5x5_reduce>>inception_4e-relu_5x5 ... complete.
### Compiling layer group: inception_4e-pool>>inception_4e-relu_pool_proj ...
### Compiling layer group: inception_4e-pool>>inception_4e-relu_pool_proj ... complete.
### Compiling layer group: pool4-3x3_s2 ...
### Compiling layer group: pool4-3x3_s2 ... complete.
### Compiling layer group: inception_5a-1x1>>inception_5a-relu_1x1 ...
### Compiling layer group: inception_5a-1x1>>inception_5a-relu_1x1 ... complete.
### Compiling layer group: inception_5a-3x3_reduce>>inception_5a-relu_3x3 ...
### Compiling layer group: inception_5a-3x3_reduce>>inception_5a-relu_3x3 ... complete.
### Compiling layer group: inception_5a-5x5_reduce>>inception_5a-relu_5x5 ...
### Compiling layer group: inception_5a-5x5_reduce>>inception_5a-relu_5x5 ... complete.
### Compiling layer group: inception_5a-pool>>inception_5a-relu_pool_proj ...
### Compiling layer group: inception_5a-pool>>inception_5a-relu_pool_proj ... complete.
### Compiling layer group: inception_5b-1x1>>inception_5b-relu_1x1 ...
### Compiling layer group: inception_5b-1x1>>inception_5b-relu_1x1 ... complete.
### Compiling layer group: inception_5b-3x3_reduce>>inception_5b-relu_3x3 ...
### Compiling layer group: inception_5b-3x3_reduce>>inception_5b-relu_3x3 ... complete.
### Compiling layer group: inception_5b-5x5_reduce>>inception_5b-relu_5x5 ...
### Compiling layer group: inception_5b-5x5_reduce>>inception_5b-relu_5x5 ... complete.
### Compiling layer group: inception_5b-pool>>inception_5b-relu_pool_proj ...
### Compiling layer group: inception_5b-pool>>inception_5b-relu_pool_proj ... complete.
### Compiling layer group: pool5-7x7_s1 ...
### Compiling layer group: pool5-7x7_s1 ... complete.
### Compiling layer group: newFC ...
### Compiling layer group: newFC ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "12.0 MB"       
    "OutputResultOffset"        "0x00c00000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x01000000"     "4.0 MB"        
    "SystemBufferOffset"        "0x01400000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03000000"     "8.0 MB"        
    "ConvWeightDataOffset"      "0x03800000"     "32.0 MB"       
    "FCWeightDataOffset"        "0x05800000"     "4.0 MB"        
    "EndOffset"                 "0x05c00000"     "Total: 92.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Intel Arria10 SoC hardware, run the deploy function of the
dlhdl.Workflow object . This function uses the output of the compile function to program the FPGA
board by using the programming file. The function also downloads the network weights and biases.
The deploy function starts programming the FPGA device, displays progress messages, and the time
it takes to deploy the network.
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hW.deploy

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 11-Jun-2021 22:20:12
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 11-Jun-2021 22:20:12

Load Example Image

I = imresize(readimage(imdsValidation,1),[224 224]);
figure
imshow(I)

Retrieve Image Prediction

Execute the predict function of the dlhdl.Workflow object and display the prediction results.

[prediction, speed] = hW.predict(single(I),'Profile','off');

### Finished writing input activations.
### Running single input activation.

[val, index] = max(prediction);
label = netTransfer.Layers(end).ClassNames{index}

label = 
'MathWorks Cap'

title(string(label));

Retrieve Deployed Network Performance

View the performance of the deployed network by using the predict method with the Profile
argument set to on.
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[~, speed] = hW.predict(single(I),'Profile','on')

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   15836394                  0.10558                       1           15845325              9.5
    conv1-7x7_s2           1139964                  0.00760 
    pool1-3x3_s2            268928                  0.00179 
    pool1-norm1             310985                  0.00207 
    conv2-3x3_reduce        278740                  0.00186 
    conv2-3x3               823735                  0.00549 
    conv2-norm2             952105                  0.00635 
    pool2-3x3_s2            273479                  0.00182 
    inception_3a-1x1        198078                  0.00132 
    inception_3a-3x3_reduce    280845                  0.00187 
    inception_3a-3x3        196410                  0.00131 
    inception_3a-5x5_reduce     73846                  0.00049 
    inception_3a-5x5         35295                  0.00024 
    inception_3a-pool        94554                  0.00063 
    inception_3a-pool_proj    115223                  0.00077 
    inception_3b-1x1        619945                  0.00413 
    inception_3b-3x3_reduce    620509                  0.00414 
    inception_3b-3x3        367297                  0.00245 
    inception_3b-5x5_reduce    207909                  0.00139 
    inception_3b-5x5        178552                  0.00119 
    inception_3b-pool       179959                  0.00120 
    inception_3b-pool_proj    344959                  0.00230 
    pool3-3x3_s2            293640                  0.00196 
    inception_4a-1x1        332992                  0.00222 
    inception_4a-3x3_reduce    181829                  0.00121 
    inception_4a-3x3         83777                  0.00056 
    inception_4a-5x5_reduce     55639                  0.00037 
    inception_4a-5x5         14500                  0.00010 
    inception_4a-pool        77187                  0.00051 
    inception_4a-pool_proj    130965                  0.00087 
    inception_4b-1x1        300254                  0.00200 
    inception_4b-3x3_reduce    220515                  0.00147 
    inception_4b-3x3        101764                  0.00068 
    inception_4b-5x5_reduce     73096                  0.00049 
    inception_4b-5x5         25720                  0.00017 
    inception_4b-pool        82277                  0.00055 
    inception_4b-pool_proj    139530                  0.00093 
    inception_4c-1x1        246715                  0.00164 
    inception_4c-3x3_reduce    246987                  0.00165 
    inception_4c-3x3        129291                  0.00086 
    inception_4c-5x5_reduce     72855                  0.00049 
    inception_4c-5x5         25444                  0.00017 
    inception_4c-pool        82661                  0.00055 
    inception_4c-pool_proj    139761                  0.00093 
    inception_4d-1x1        220154                  0.00147 
    inception_4d-3x3_reduce    273136                  0.00182 
    inception_4d-3x3        159811                  0.00107 
    inception_4d-5x5_reduce     86719                  0.00058 
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    inception_4d-5x5         32485                  0.00022 
    inception_4d-pool        82309                  0.00055 
    inception_4d-pool_proj    139464                  0.00093 
    inception_4e-1x1        474515                  0.00316 
    inception_4e-3x3_reduce    309661                  0.00206 
    inception_4e-3x3        193442                  0.00129 
    inception_4e-5x5_reduce     88661                  0.00059 
    inception_4e-5x5         62881                  0.00042 
    inception_4e-pool        85098                  0.00057 
    inception_4e-pool_proj    254234                  0.00169 
    pool4-3x3_s2            164072                  0.00109 
    inception_5a-1x1        385821                  0.00257 
    inception_5a-3x3_reduce    250827                  0.00167 
    inception_5a-3x3         99439                  0.00066 
    inception_5a-5x5_reduce     69697                  0.00046 
    inception_5a-5x5         32465                  0.00022 
    inception_5a-pool        53624                  0.00036 
    inception_5a-pool_proj    205084                  0.00137 
    inception_5b-1x1        567107                  0.00378 
    inception_5b-3x3_reduce    295819                  0.00197 
    inception_5b-3x3        139308                  0.00093 
    inception_5b-5x5_reduce     92415                  0.00062 
    inception_5b-5x5         46311                  0.00031 
    inception_5b-pool        53882                  0.00036 
    inception_5b-pool_proj    205632                  0.00137 
    pool5-7x7_s1             69837                  0.00047 
    newFC                    23215                  0.00015 
 * The clock frequency of the DL processor is: 150MHz

speed=75×5 table
                                   Latency(cycles)    Latency(seconds)    NumFrames    Total Latency(cycles)    Frame/s 
                                   _______________    ________________    _________    _____________________    ________

    Network                          1.5836e+07             0.10558          "1"            "15845325"          "9.4665"
    ____conv1-7x7_s2                   1.14e+06           0.0075998          ""             ""                  ""      
    ____pool1-3x3_s2                 2.6893e+05           0.0017929          ""             ""                  ""      
    ____pool1-norm1                  3.1098e+05           0.0020732          ""             ""                  ""      
    ____conv2-3x3_reduce             2.7874e+05           0.0018583          ""             ""                  ""      
    ____conv2-3x3                    8.2374e+05           0.0054916          ""             ""                  ""      
    ____conv2-norm2                   9.521e+05           0.0063474          ""             ""                  ""      
    ____pool2-3x3_s2                 2.7348e+05           0.0018232          ""             ""                  ""      
    ____inception_3a-1x1             1.9808e+05           0.0013205          ""             ""                  ""      
    ____inception_3a-3x3_reduce      2.8084e+05           0.0018723          ""             ""                  ""      
    ____inception_3a-3x3             1.9641e+05           0.0013094          ""             ""                  ""      
    ____inception_3a-5x5_reduce           73846          0.00049231          ""             ""                  ""      
    ____inception_3a-5x5                  35295           0.0002353          ""             ""                  ""      
    ____inception_3a-pool                 94554          0.00063036          ""             ""                  ""      
    ____inception_3a-pool_proj       1.1522e+05          0.00076815          ""             ""                  ""      
    ____inception_3b-1x1             6.1994e+05            0.004133          ""             ""                  ""      
      ⋮

The speed table contains the latency information for every layer, total network latency, and the
overall network performance in frames per second (FPS). For more information, see “Profile
Inference Run” on page 5-4.
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Estimate Resource Utilization for Custom Board and Reference
Design

Rapidly prototype the deployment of deep learning networks to your custom board by using the
estimateResources function. Estimate the resource utilization of the deep learning processor
configuration for your custom board. Optimize the integration of custom IP cores and reference
design into your system by using the estimateResources function to estimate the resource
utilization of your reference design. The synthesis tool that you use must be in the list of tools
supported by the SynthesisTool property of the dlhdl.ProcessorConfig object. For a list of
supported tools and device families, see “SynthesisTool” and “SynthesisToolChipFamily”.

In this example, estimate the resource utilization for your custom board that has the Kintex®
Ultrascale+™ chip family. Also estimate the resource utilization of the reference design for the
Xilinx® Zynq® Ultrascale+™ MPSoC ZCU102 board.

Prerequisites

• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• HDL Coder™

Estimate Resource Utilization for Kintex® Ultrascale™ Board

To estimate the resource utilization for your custom board that has a Kintex® Ultrascale™ chip
family , use the estimateResource function of the dlhdl.ProcessorConfig object.

1 Add the dlhdl_device_registration.m file to the MATLAB® search path.
2 Create a dlhdl.ProcessorConfig object.
3 Update the SynthesisToolChipFamily and SynthesisToolDeviceName properties of the

dlhdl.ProcessorConfig object.
4 Use the estimateResources function to retrieve the resource utilization for your custom

board.

Deep Learning HDL Toolbox™ does not support lookup table (LUT) estimation for custom boards.

hPC = dlhdl.ProcessorConfig;
hPC.SynthesisToolChipFamily = 'KintexU';
hPC.SynthesisToolDeviceName = 'xcku040-ffva1156-2-e';
hPC.estimateResources

Warning: Device family "KintexU" is not currently supported for LUT Estimation. Supported families are Zynq, Zynq UltraScale+ and Arria 10.

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    1920              600           242400
                        -------------    -------------    ------------- 
DL_Processor                381( 20%)        508( 85%)          0(  0%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices
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Estimate Resource Utilization for Custom Reference Design

Estimate the resource utilization for a reference design that you want to integrate into your system
that has a Xilinx® Zynq® Ultrascale+™ MPSoC ZCU102 board. Use the estimateResource
function with the IncludeReferenceDesign name-value argument. The estimateResources
function uses the ResourcesUsed.LogicElements, ResourcesUsed.DSP, and
ResourcesUsed.RAM information in the reference design plugin file to perform the resource
estimation. To estimate resource utilization for your custom reference design, you must populate your
reference design file with values for ResourcesUsed.LogicElements, ResourcesUsed.DSP, and
ResourcesUsed.RAM. See “ResourcesUsed”. The reference design used in this code is located at
$supportpackageinstallationfolder/Xilinx/boards/
+DLZCU102/+matlab_libiio_3axi4_master_2019_1/plugin_rd.m.

hPC_referencedesign = dlhdl.ProcessorConfig;
hPC_referencedesign.estimateResources('IncludeReferenceDesign',true)

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
Total                       384( 16%)        586( 65%)     251119( 92%)
ReferenceDesign               3(  1%)         78(  9%)      35000( 13%)
DL_Processor                381( 16%)        508( 56%)     216119( 79%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices

The estimateResources function returns the resource utilization for the reference design and for
the deep learning processor configuration.

Supporting Files

Device Registration File

Use the dlhdl_device_registration.m file to register a custom device family. Estimate the
resource utilization of the custom device by using the estimateResources function.

type dlhdl_device_registration.m

function hFPGADeviceFamily = dlhdl_device_registration
% Register a new device family by providing the following details:
% 1. Device Family Name 
% 2. Vendor(Intel/Xilinx) 
% 3. DSP Width 
% 4. RAM Width 
% 5. RAM Depth 
% 6. SplitDSP Width(Optional) - alternative DSP Width supported by the DSP macro
% 7. SplitRAM Width(Optional) - alternative RAM Width supported by the RAM macro 

hFPGADeviceFamily = { ...
    kintex_ultrascale();...
    };
end

function hFPGADeviceFamily = kintex_ultrascale()
    % Datasheets :
    % https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
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    % https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
    hFPGADeviceFamily = hdlcoder.FPGADeviceInfo('Name', 'KintexU');
    hFPGADeviceFamily.Vendor = 'Xilinx';
    hFPGADeviceFamily.DSPWidth = [27, 18];
    hFPGADeviceFamily.RAMWidth = 36;
    hFPGADeviceFamily.SplitRAMWidth = 18;
    hFPGADeviceFamily.RAMDepth = 1024;
end
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Speech Command Recognition by Using FPGA

This example shows how to deploy a custom pretrained series network that detects the presence of
speech commands in audio to a Xilinx™ Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit. This
example uses the pretrained network that was trained by using the Speech Commands Dataset [1]. To
create the pretrained network, see “Train Speech Command Recognition Model Using Deep
Learning”.

Prerequisites

• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Audio Toolbox™
• Xilinx™ Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit

Load Speech Commands Data Set

This example uses the Google Speech Commands Dataset [1]. Download the dataset and untar the
downloaded file. Set PathToDatabase to the location of the data.

url = 'https://ssd.mathworks.com/supportfiles/audio/google_speech.zip';
downloadFolder = tempdir;
dataFolder = fullfile(downloadFolder,'google_speech');

if ~exist(dataFolder,'dir')
    disp('Downloading data set (1.4 GB) ...')
    unzip(url,downloadFolder)
end

Load Pretrained Speech Recognition Network

The pretrained network trainedAudioNet is a simple series network made up of 24 layers. The
network uses max pooling layers to downsample the feature maps "spatially" (that is, in time and
frequency) and a final max pooling layer that pools the input feature map globally over time. This
enforces (approximate) time-translation invariance in the input spectrograms, allowing the network
to perform the same classification independent of the exact position of the speech in time. Global
pooling also significantly reduces the number of parameters in the final fully connected layer. To
reduce the possibility of the network memorizing specific features of the training data, add a small
amount of dropout to the input to the last fully connected layer.

The network is small, as it has only five convolutional layers with few filters. numF controls the
number of filters in the convolutional layers. To increase the accuracy of the network, try increasing
the network depth by adding identical blocks of convolutional, batch normalization, and ReLU layers.
You can also try increasing the number of convolutional filters by increasing numF.

Use a weighted cross entropy classification loss. The
weightedClassificationLayer(classWeights) function creates a custom classification layer
that calculates the cross entropy loss with observations weighted by classWeights. Specify the
class weights in the same order as the classes appear in categories(YTrain). To give each class
equal total weight in the loss, use class weights that are inversely proportional to the number of
training examples in each class. When using the Adam optimizer to train the network, the training
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algorithm is independent of the overall normalization of the class weights. Load the pretrained
network trainedAudioNet.

load('trainedAudioNet.mat');

Create Training and Validation Datastore

Create an audioDataStore that points to the training and validation data sets. See
audioDatastore (Audio Toolbox).

ads = audioDatastore(fullfile(dataFolder, 'train'), ...
    'IncludeSubfolders',true, ...
    'FileExtensions','.wav', ...
    'LabelSource','foldernames');

Specify the words that you want your model to recognize as commands. Label words that are not
commands as unknown. Labeling words that are not commands as unknown creates a group of words
that approximates the distribution of all words other than the commands. The network uses this
group to learn the difference between commands and all other words.

To reduce the class imbalance between the known and unknown words and speed up processing,
include only a fraction of the unknown words in the training set.

To create a datastore that contains only the commands and the subset of unknown words, Use
subset (Audio Toolbox) (Audio Toolbox). Count the number of examples belonging to each category.

commands = categorical(["yes","no","up","down","left","right","on","off","stop","go"]);

isCommand = ismember(ads.Labels,commands);
isUnknown = ~isCommand;

includeFraction = 0.2;
mask = rand(numel(ads.Labels),1) < includeFraction;
isUnknown = isUnknown & mask;
ads.Labels(isUnknown) = categorical("unknown");

adsTrain = subset(ads,isCommand|isUnknown);
countEachLabel(adsTrain)

ans=11×2 table
     Label     Count
    _______    _____

    down       1842 
    go         1861 
    left       1839 
    no         1853 
    off        1839 
    on         1864 
    right      1852 
    stop       1885 
    unknown    4390 
    up         1843 
    yes        1860 

ads = audioDatastore(fullfile(dataFolder, 'validation'), ...
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    'IncludeSubfolders',true, ...
    'FileExtensions','.wav', ...
    'LabelSource','foldernames');

isCommand = ismember(ads.Labels,commands);
isUnknown = ~isCommand;

includeFraction = 0.2;
mask = rand(numel(ads.Labels),1) < includeFraction;
isUnknown = isUnknown & mask;
ads.Labels(isUnknown) = categorical("unknown");

adsValidation = subset(ads,isCommand|isUnknown);
countEachLabel(adsValidation)

ans=11×2 table
     Label     Count
    _______    _____

    down        264 
    go          260 
    left        247 
    no          270 
    off         256 
    on          257 
    right       256 
    stop        246 
    unknown     618 
    up          260 
    yes         261 

To train the network with the entire dataset and achieve the highest possible accuracy, set
reduceDataset to false. To run this example quickly, set reduceDataset to true.

reduceDataset = false;
if reduceDataset
    numUniqueLabels = numel(unique(adsTrain.Labels));
    % Reduce the dataset by a factor of 20
    adsTrain = splitEachLabel(adsTrain,round(numel(adsTrain.Files) / numUniqueLabels / 20));
    adsValidation = splitEachLabel(adsValidation,round(numel(adsValidation.Files) / numUniqueLabels / 20));
end

Compute Auditory Spectograms

To prepare the data for efficient training of a convolutional neural network, convert the speech
waveforms to auditory-based spectrograms.

Define the parameters of the feature extraction. The segmentDuration variable is the duration of
each speech clip (in seconds). The frameDuration variable is the duration of each frame for
spectrum calculation. The hopDuration variable is the time step between each spectrum. numBands
is the number of filters in the auditory spectrogram.

To perform the feature extraction, create an audioFeatureExtractor (Audio Toolbox) (Audio
Toolbox) object.

fs = 16e3; % Known sample rate of the data set.
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segmentDuration = 1;
frameDuration = 0.025;
hopDuration = 0.010;

segmentSamples = round(segmentDuration*fs);
frameSamples = round(frameDuration*fs);
hopSamples = round(hopDuration*fs);
overlapSamples = frameSamples - hopSamples;

FFTLength = 512;
numBands = 50;

afe = audioFeatureExtractor( ...
    'SampleRate',fs, ...
    'FFTLength',FFTLength, ...
    'Window',hann(frameSamples,'periodic'), ...
    'OverlapLength',overlapSamples, ...
    'barkSpectrum',true);
setExtractorParams(afe,'barkSpectrum','NumBands',numBands,'WindowNormalization',false);

Read a file from the dataset. Training a convolutional neural network requires input to be a
consistent size. Some files in the data set are less than 1 second long. Apply zero-padding to the front
and back of the audio signal so that it is of length segmentSamples.

x = read(adsTrain);

numSamples = size(x,1);

numToPadFront = floor( (segmentSamples - numSamples)/2 );
numToPadBack = ceil( (segmentSamples - numSamples)/2 );

xPadded = [zeros(numToPadFront,1,'like',x);x;zeros(numToPadBack,1,'like',x)];

To extract audio features, call extract. The output is a Bark spectrum with time across rows.

features = extract(afe,xPadded);
[numHops,numFeatures] = size(features)

numHops = 98

numFeatures = 50

In this example, you post-process the auditory spectrogram by applying a logarithm. Taking a log of
small numbers can lead to roundoff error.

To speed up processing, you can distribute the feature extraction across multiple workers by using
parfor.

First, determine the number of partitions for the dataset. If you do not have Parallel Computing
Toolbox™, use a single partition.

if ~isempty(ver('parallel')) && ~reduceDataset
    pool = gcp;
    numPar = numpartitions(adsTrain,pool);
else
    numPar = 1;
end
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Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

For each partition, read from the datastore, zero-pad the signal, and then extract the features.

parfor ii = 1:numPar
    subds = partition(adsTrain,numPar,ii);
    XTrain = zeros(numHops,numBands,1,numel(subds.Files));
    for idx = 1:numel(subds.Files)
        x = read(subds);
        xPadded = [zeros(floor((segmentSamples-size(x,1))/2),1);x;zeros(ceil((segmentSamples-size(x,1))/2),1)];
        XTrain(:,:,:,idx) = extract(afe,xPadded);
    end
    XTrainC{ii} = XTrain;
end

Convert the output to a four-dimensional array that has auditory spectrograms along the fourth
dimension.

XTrain = cat(4,XTrainC{:});

[numHops,numBands,numChannels,numSpec] = size(XTrain)

numHops = 98

numBands = 50

numChannels = 1

numSpec = 22928

To obtain data that has a smoother distribution, take the logarithm of the spectrograms by using a
small offset.

epsil = 1e-6;
XTrain = log10(XTrain + epsil);

Perform the feature extraction steps described above for the validation set.

if ~isempty(ver('parallel'))
    pool = gcp;
    numPar = numpartitions(adsValidation,pool);
else
    numPar = 1;
end
parfor ii = 1:numPar
    subds = partition(adsValidation,numPar,ii);
    XValidation = zeros(numHops,numBands,1,numel(subds.Files));
    for idx = 1:numel(subds.Files)
        x = read(subds);
        xPadded = [zeros(floor((segmentSamples-size(x,1))/2),1);x;zeros(ceil((segmentSamples-size(x,1))/2),1)];
        XValidation(:,:,:,idx) = extract(afe,xPadded);
    end
    XValidationC{ii} = XValidation;
end
XValidation = cat(4,XValidationC{:});
XValidation = log10(XValidation + epsil);

Isolate the train and validation labels. Remove empty categories.
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YTrain = removecats(adsTrain.Labels);
YValidation = removecats(adsValidation.Labels);

Add Background Noise Data

The network must be able to recognize different spoken words and also to detect if the input contains
silence or background noise.

To create samples of one-second clips of background noise, use the audio files in the _background_
folder. Create an equal number of background clips from each background noise file. You can also
create your own recordings of background noise and add them to the _background_ folder. Before
calculating the spectrograms, the function rescales each audio clip by using a factor sampled from a
log-uniform distribution in the range provided by volumeRange.

adsBkg = audioDatastore(fullfile(dataFolder, 'background'));
numBkgClips = 4000;
if reduceDataset
    numBkgClips = numBkgClips/20;
end
volumeRange = log10([1e-4,1]);

numBkgFiles = numel(adsBkg.Files);
numClipsPerFile = histcounts(1:numBkgClips,linspace(1,numBkgClips,numBkgFiles+1));
Xbkg = zeros(size(XTrain,1),size(XTrain,2),1,numBkgClips,'single');
bkgAll = readall(adsBkg);
ind = 1;

for count = 1:numBkgFiles
    bkg = bkgAll{count};
    idxStart = randi(numel(bkg)-fs,numClipsPerFile(count),1);
    idxEnd = idxStart+fs-1;
    gain = 10.^((volumeRange(2)-volumeRange(1))*rand(numClipsPerFile(count),1) + volumeRange(1));
    for j = 1:numClipsPerFile(count)

        x = bkg(idxStart(j):idxEnd(j))*gain(j);

        x = max(min(x,1),-1);

        Xbkg(:,:,:,ind) = extract(afe,x);

        if mod(ind,1000)==0
            disp("Processed " + string(ind) + " background clips out of " + string(numBkgClips))
        end
        ind = ind + 1;
    end
end

Processed 1000 background clips out of 4000
Processed 2000 background clips out of 4000
Processed 3000 background clips out of 4000
Processed 4000 background clips out of 4000

Xbkg = log10(Xbkg + epsil);

Split the spectrograms of background noise among the training, validation, and test sets. Because the
_background_noise_ folder contains only about five and a half minutes of background noise, the
background samples in the different data sets are highly correlated. To increase the variation in the
background noise, you can create your own background files and add them to the folder. To increase
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the robustness of the network to noise, you can also try mixing background noise into the speech
files.

numTrainBkg = floor(0.85*numBkgClips);
numValidationBkg = floor(0.15*numBkgClips);

XTrain(:,:,:,end+1:end+numTrainBkg) = Xbkg(:,:,:,1:numTrainBkg);
YTrain(end+1:end+numTrainBkg) = "background";

XValidation(:,:,:,end+1:end+numValidationBkg) = Xbkg(:,:,:,numTrainBkg+1:end);
YValidation(end+1:end+numValidationBkg) = "background";

Create Target Object

Create a target object for your target device that has a vendor name and an interface to connect your
target device to the host computer. Interface options are JTAG (default) and Ethernet. Vendor options
are Intel or Xilinx. Use the installed Xilinx Vivado Design Suite over an Ethernet connection to
program the device.

hT = dlhdl.Target('Xilinx', Interface = 'Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained series network trainedAudioNet as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Zynq UltraScale+ MPSoC ZCU102 board.
The bitstream uses a single data type.

hW = dlhdl.Workflow(Network = trainedNet, Bitstream = 'zcu102_single', Target = hT);

Compile trainedAudioNet Network

To compile the trainedAudioNet series network, run the compile function of the dlhdl.Workflow
object.

compile(hW)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### The network includes the following layers:
     1   'imageinput'    Image Input             98×50×1 images with 'zerocenter' normalization                (SW Layer)
     2   'conv_1'        Convolution             12 3×3×1 convolutions with stride [1  1] and padding 'same'   (HW Layer)
     3   'batchnorm_1'   Batch Normalization     Batch normalization with 12 channels                          (HW Layer)
     4   'relu_1'        ReLU                    ReLU                                                          (HW Layer)
     5   'maxpool_1'     Max Pooling             3×3 max pooling with stride [2  2] and padding 'same'         (HW Layer)
     6   'conv_2'        Convolution             24 3×3×12 convolutions with stride [1  1] and padding 'same'  (HW Layer)
     7   'batchnorm_2'   Batch Normalization     Batch normalization with 24 channels                          (HW Layer)
     8   'relu_2'        ReLU                    ReLU                                                          (HW Layer)
     9   'maxpool_2'     Max Pooling             3×3 max pooling with stride [2  2] and padding 'same'         (HW Layer)
    10   'conv_3'        Convolution             48 3×3×24 convolutions with stride [1  1] and padding 'same'  (HW Layer)
    11   'batchnorm_3'   Batch Normalization     Batch normalization with 48 channels                          (HW Layer)
    12   'relu_3'        ReLU                    ReLU                                                          (HW Layer)
    13   'maxpool_3'     Max Pooling             3×3 max pooling with stride [2  2] and padding 'same'         (HW Layer)
    14   'conv_4'        Convolution             48 3×3×48 convolutions with stride [1  1] and padding 'same'  (HW Layer)
    15   'batchnorm_4'   Batch Normalization     Batch normalization with 48 channels                          (HW Layer)
    16   'relu_4'        ReLU                    ReLU                                                          (HW Layer)
    17   'conv_5'        Convolution             48 3×3×48 convolutions with stride [1  1] and padding 'same'  (HW Layer)
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    18   'batchnorm_5'   Batch Normalization     Batch normalization with 48 channels                          (HW Layer)
    19   'relu_5'        ReLU                    ReLU                                                          (HW Layer)
    20   'maxpool_4'     Max Pooling             13×1 max pooling with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    21   'dropout'       Dropout                 20% dropout                                                   (HW Layer)
    22   'fc'            Fully Connected         12 fully connected layer                                      (HW Layer)
    23   'softmax'       Softmax                 softmax                                                       (HW Layer)
    24   'classoutput'   Classification Output   Weighted cross entropy                                        (SW Layer)
                                                                                                             
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'imageinput' of type 'ImageInputLayer' is split into 'imageinput' and 'imageinput_norm'.
### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'weightedClassificationLayer' is implemented in software.
### Compiling layer group: conv_1>>relu_5 ...
### Compiling layer group: conv_1>>relu_5 ... complete.
### Compiling layer group: maxpool_4 ...
### Compiling layer group: maxpool_4 ... complete.
### Compiling layer group: fc ...
### Compiling layer group: fc ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00c00000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02800000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02c00000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x03000000"     "4.0 MB"        
    "EndOffset"                 "0x03400000"     "Total: 52.0 MB"

### Network compilation complete.

ans = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {{}  [4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 4.4809 0 0 0 … ]}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Zynq® UltraScale+™ MPSoC ZCU102 hardware, run the deploy
function of the dlhdl.Workflow object. This function uses the output of the compile function to
program the FPGA board by using the programming file.The function also downloads the network
weights and biases. The deploy function verifies the Xilinx Vivado tool and the supported tool version.
It then starts programming the FPGA device by using the bitstream, displays progress messages, and
the time it takes to deploy the network.

deploy(hW)

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
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# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.

System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 11-Nov-2021 15:15:18
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 11-Nov-2021 15:15:18

Run Prediction on Audio Files

Classify five inputs from the validation data set and compare the prediction results to the
classification results from the Deep Learning Toolbox™. YPred is the classification result from the
Deep learning Toolbox™. The fpga_prediction variable is the classification result from the FPGA.

numtestFrames = size(XValidation,4);
numView = 5;
listIndex = randperm(numtestFrames,numView);
testDataBatch = XValidation(:,:,:,listIndex);
YPred = classify(trainedNet,testDataBatch);
[scores,speed] = predict(hW,testDataBatch, Profile ='on');

### Finished writing input activations.
### Running in multi-frame mode with 5 inputs.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                     353130                  0.00161                       5            1573112            699.3
    imageinput_norm          52668                  0.00024 
    conv_1                   21136                  0.00010 
    maxpool_1                47686                  0.00022 
    conv_2                   37475                  0.00017 
    maxpool_2                45278                  0.00021 
    conv_3                   21260                  0.00010 
    maxpool_3                38857                  0.00018 
    conv_4                   16171                  0.00007 
    conv_5                   27011                  0.00012 
    maxpool_4                27632                  0.00013 
    fc                       17923                  0.00008 
 * The clock frequency of the DL processor is: 220MHz

[~,idx] = max(scores,[],2);
fpga_prediction = trainedNet.Layers(end).Classes(idx);

Compare the prediction results from Deep Learning Toolbox™ and the FPGA side by side. The
prediction results from the FPGA match the prediction results from Deep Learning Toolbox™. In this
table, the ground truth prediction is the Deep Learning Toolbox™ prediction.
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fprintf('%12s %24s\n','Ground Truth','FPGA Prediction');for i= 1:size(fpga_prediction,1)
    fprintf('%s %24s\n',YPred(i),fpga_prediction(i)); end

Ground Truth          FPGA Prediction

no                       no
unknown                  unknown
yes                      yes
no                       no
yes                      yes

References

[1] Warden P. "Speech Commands: A public dataset for single-word speech recognition", 2017.
Available at http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz. Copyright Google
2017. The Speech Commands Dataset is licensed under the Creative Commons Attribution 4.0
license, available here: https://creativecommons.org/licenses/by/4.0/legalcode.

MathWorks, Inc.

See Also
dlhdl.Target | dlhdl.Workflow | compile | deploy | predict | classify

More About
• “Prototype Deep Learning Networks on FPGA and SoC Devices” on page 5-2
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Modulation Classification by Using FPGA

This example shows how to deploy a pretrained convolutional neural network (CNN) for modulation
classification to the Xilinx™ Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit. The pretrained
network is trained by using generated synthetic, channel-impaired waveforms. To train the
trainedNet network, see “Modulation Classification with Deep Learning”.

Prerequisites

• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Communications Toolbox™
• Xilinx™ Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit

Predict Modulation Type by Using CNN

The trained CNN in this example recognizes these eight digital and three analog modulation types:

• Binary phase shift keying (BPSK)
• Quadrature phase shift keying (QPSK)
• 8-ary phase shift keying (8-PSK)
• 16-ary quadrature amplitude modulation (16-QAM)
• 64-ary quadrature amplitude modulation (64-QAM)
• 4-ary pulse amplitude modulation (PAM4)
• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast FM (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

modulationTypes = categorical(["BPSK", "QPSK", "8PSK", ...
  "16QAM", "64QAM", "PAM4", "GFSK", "CPFSK", ...
  "B-FM", "DSB-AM", "SSB-AM"]);

Load the trained network.

load trainedModulationClassificationNetwork
trainedNet

trainedNet = 
  SeriesNetwork with properties:

         Layers: [28×1 nnet.cnn.layer.Layer]
     InputNames: {'Input Layer'}
    OutputNames: {'Output'}

The trained CNN takes 1024 channel-impaired samples and predicts the modulation type of each
frame. Generate several PAM4 frames that have Rician multipath fading, center frequency and
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sampling time drift, and AWGN. To generate synthetic signals to test the CNN, use the following
functions. Then use the CNN to predict the modulation type of the frames.

• randi: Generate random bits
• pammod (Communications Toolbox) (Communications Toolbox) PAM4-modulate the bits
• rcosdesign (Signal Processing Toolbox) (Signal Processing Toolbox): Design a square-root raised

cosine pulse shaping filter
• filter: Pulse shape the symbols
• comm.RicianChannel (Communications Toolbox) (Communications Toolbox): Apply Rician

multipath channel
• comm.PhaseFrequencyOffset (Communications Toolbox) (Communications Toolbox): Apply

phase and frequency shift due to clock offset
• interp1: Apply timing drift due to clock offset
• awgn (Communications Toolbox) (Communications Toolbox): Add AWGN

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(123456)
% Random bits
d = randi([0 3], 1024, 1);
% PAM4 modulation
syms = pammod(d,4);
% Square-root raised cosine filter
filterCoeffs = rcosdesign(0.35,4,8);
tx = filter(filterCoeffs,1,upsample(syms,8));

% Channel
SNR = 30;
maxOffset = 5;
fc = 902e6;
fs = 200e3;
multipathChannel = comm.RicianChannel(...
    'SampleRate', fs, ...
    'PathDelays', [0 1.8 3.4] / 200e3, ...
    'AveragePathGains', [0 -2 -10], ...
    'KFactor', 4, ...
    'MaximumDopplerShift', 4);

frequencyShifter = comm.PhaseFrequencyOffset(...
    'SampleRate', fs);

% Apply an independent multipath channel
reset(multipathChannel)
outMultipathChan = multipathChannel(tx);

% Determine clock offset factor
clockOffset = (rand() * 2*maxOffset) - maxOffset;
C = 1 + clockOffset / 1e6;

% Add frequency offset
frequencyShifter.FrequencyOffset = -(C-1)*fc;
outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift
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t = (0:length(tx)-1)' / fs;
newFs = fs * C;
tp = (0:length(tx)-1)' / newFs;
outTimeDrift = interp1(t, outFreqShifter, tp);

% Add noise
rx = awgn(outTimeDrift,SNR,0);

% Frame generation for classification
unknownFrames = helperModClassGetNNFrames(rx);

% Classification
[prediction1,score1] = classify(trainedNet,unknownFrames);

Return the classifier predictions, which are analogous to hard decisions. The network correctly
identifies the frames as PAM4 frames. For details on the generation of the modulated signals, see the
helperModClassGetModulator function.

The classifier also returns a vector of scores for each frame. The score corresponds to the probability
that each frame has the predicted modulation type. Plot the scores.

helperModClassPlotScores(score1,modulationTypes)

Waveform Generation for Training

Generate 10,000 frames for each modulation type, where 80% of the frames are used for training,
10% are used for validation and 10% are used for testing. Use the training and validation frames
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during the network training phase. You obtain the final classification accuracy by using test frames.
Each frame is 1024 samples long and has a sample rate of 200 kHz. For digital modulation types,
eight samples represent a symbol. The network makes each decision based on single frames rather
than on multiple consecutive frames (as in video). Assume a center frequency of 902 MHz and 100
MHz for the digital and analog modulation types, respectively.

numFramesPerModType = 10000;
percentTrainingSamples = 80;
percentValidationSamples = 10;
percentTestSamples = 10;

sps = 8;                % Samples per symbol
spf = 1024;             % Samples per frame
symbolsPerFrame = spf / sps;
fs = 200e3;             % Sample rate
fc = [902e6 100e6];     % Center frequencies

Create Channel Impairments

Pass each frame through a channel by using:

• AWGN
• Rician multipath fading
• Clock offset, resulting in center frequency offset and sampling time drift

Because the network in this example makes decisions based on single frames, each frame must pass
through an independent channel AWGN.

The channel adds AWGN by using an SNR of 30 dB. Implement the channel by using the awgn
(Communications Toolbox) (Communications Toolbox) function.

Rician Multipath

The channel passes the signals through a Rician multipath fading channel by using the
comm.RicianChannel (Communications Toolbox) (Communications Toolbox) System object. Assume
a delay profile of [0 1.8 3.4] samples that have corresponding average path gains of [0 -2 -10] dB. The
K-factor is 4 and the maximum Doppler shift is 4 Hz, which is equivalent to a walking speed at 902
MHz. Implement the channel by using the following settings.

Clock Offset

Clock offset occurs because of the inaccuracies of internal clock sources of transmitters and
receivers. Clock offset causes the center frequency, which is used to downconvert the signal to
baseband, and the digital-to-analog converter sampling rate to differ from theoretical values. The
channel simulator uses the clock offset factor C, expressed as C=1+Δclock106, where Δclock is the
clock offset. For each frame, the channel generates a random Δclock value from a uniformly
distributed set of values in the range [−maxΔclock maxΔclock], where maxΔclock is the maximum
clock offset. Clock offset is measured in parts per million (ppm). For this example, assume a maximum
clock offset of 5 ppm.

maxDeltaOff = 5;
deltaOff = (rand()*2*maxDeltaOff) - maxDeltaOff;
C = 1 + (deltaOff/1e6);

Frequency Offset
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Subject each frame to a frequency offset based on clock offset factor C and the center frequency.
Implement the channel by using the comm.PhaseFrequencyOffset (Communications Toolbox)
(Communications Toolbox).

Sampling Rate Offset

Subject each frame to a sampling rate offset based on clock offset factor C. Implement the channel by
using the interp1 function to resample the frame at the new rate of C×fs.

Combined Channel

To apply all three channel impairments to the frames, use the helperModClassTestChannel object.

channel = helperModClassTestChannel(...
  'SampleRate', fs, ...
  'SNR', SNR, ...
  'PathDelays', [0 1.8 3.4] / fs, ...
  'AveragePathGains', [0 -2 -10], ...
  'KFactor', 4, ...
  'MaximumDopplerShift', 4, ...
  'MaximumClockOffset', 5, ...
  'CenterFrequency', 902e6)

channel = 
  helperModClassTestChannel with properties:

                    SNR: 30
        CenterFrequency: 902000000
             SampleRate: 200000
             PathDelays: [0 9.0000e-06 1.7000e-05]
       AveragePathGains: [0 -2 -10]
                KFactor: 4
    MaximumDopplerShift: 4
     MaximumClockOffset: 5

You can view basic information about the channel by using the info object function.

chInfo = info(channel)

chInfo = struct with fields:
               ChannelDelay: 6
     MaximumFrequencyOffset: 4510
    MaximumSampleRateOffset: 1

Waveform Generation

Create a loop that generates channel-impaired frames for each modulation type and stores the frames
with their corresponding labels in MAT files. By saving the data into files, you do not have to
eliminate the need to generate the data every time you run this example. You can also share the data
more effectively.

Remove a random number of samples from the beginning of each frame to remove transients and to
make sure that the frames have a random starting point with respect to the symbol boundaries.

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
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rng(1235)
tic

numModulationTypes = length(modulationTypes);

channelInfo = info(channel);
transDelay = 50;
dataDirectory = fullfile(tempdir,"ModClassDataFiles");
disp("Data file directory is " + dataDirectory);

fileNameRoot = "frame";

% Check if data files exist
dataFilesExist = false;
if exist(dataDirectory,'dir')
  files = dir(fullfile(dataDirectory,sprintf("%s*",fileNameRoot)));
  if length(files) == numModulationTypes*numFramesPerModType
    dataFilesExist = true;
  end
end

if ~dataFilesExist
  disp("Generating data and saving in data files...")
  [success,msg,msgID] = mkdir(dataDirectory);
  if ~success
    error(msgID,msg)
  end
  for modType = 1:numModulationTypes
    elapsedTime = seconds(toc);
    elapsedTime.Format = 'hh:mm:ss';
    fprintf('%s - Generating %s frames\n', ...
      elapsedTime, modulationTypes(modType))
    
    label = modulationTypes(modType);
    numSymbols = (numFramesPerModType / sps);
    dataSrc = helperModClassGetSource(modulationTypes(modType), sps, 2*spf, fs);
    modulator = helperModClassGetModulator(modulationTypes(modType), sps, fs);
    if contains(char(modulationTypes(modType)), {'B-FM','DSB-AM','SSB-AM'})
      % Analog modulation types use a center frequency of 100 MHz
      channel.CenterFrequency = 100e6;
    else
      % Digital modulation types use a center frequency of 902 MHz
      channel.CenterFrequency = 902e6;
    end
    
    for p=1:numFramesPerModType
      % Generate random data
      x = dataSrc();
      
      % Modulate
      y = modulator(x);
      
      % Pass through independent channels
      rxSamples = channel(y);
      
      % Remove transients from the beginning, trim to size, and normalize
      frame = helperModClassFrameGenerator(rxSamples, spf, spf, transDelay, sps);
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      % Save data file
      fileName = fullfile(dataDirectory,...
        sprintf("%s%s%03d",fileNameRoot,modulationTypes(modType),p));
      save(fileName,"frame","label")
    end
  end
else
  disp("Data files exist. Skip data generation.")
end

Data files exist. Skip data generation.

% Plot the amplitude of the real and imaginary parts of the example frames
% against the sample number
helperModClassPlotTimeDomain(dataDirectory,modulationTypes,fs)

% Plot the spectrogram of the example frames
helperModClassPlotSpectrogram(dataDirectory,modulationTypes,fs,sps)
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Create a Datastore

To manage the files that contain the generated complex waveforms, use a signalDatastore object.
Datastores are especially useful when each individual file fits in memory, but the entire collection
does not necessarily fit.

frameDS = signalDatastore(dataDirectory,'SignalVariableNames',["frame","label"]);

Transform Complex Signals to Real Arrays

The deep learning network in this example looks for real inputs while the received signal has complex
baseband samples. Transform the complex signals into real-valued 4-D arrays. The output frames
have size 1-by-spf-by-2-by-N, where the first page (3rd dimension) is in-phase samples and the second
page is quadrature samples. When the convolutional filters are of size 1-by-spf, this approach ensures
that the information in the I and Q is mixed even in the convolutional layers and makes better use of
the phase information. See helperModClassIQAsPages.

frameDSTrans = transform(frameDS,@helperModClassIQAsPages);

Split into Training, Validation, and Test

Divide the frames into training, validation, and test data. See helperModClassSplitData.

splitPercentages = [percentTrainingSamples,percentValidationSamples,percentTestSamples];
[trainDSTrans,validDSTrans,testDSTrans] = helperModClassSplitData(frameDSTrans,splitPercentages);

Import Data Into Memory
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Neural network training is iterative. At every iteration, the datastore reads data from files and
transforms the data before updating the network coefficients. If the data fits into the memory of your
computer, importing the data from the files into the memory enables faster training by eliminating
this repeated read from file and transform process. Instead, the data is read from the files and
transformed once. Training this network using data files on disk takes about 110 minutes while
training using in-memory data takes about 50 minutes.

Import the data in the files into memory. The files have two variables: frame and label. Each read
call to the datastore returns a cell array, where the first element is the frame and the second element
is the label. To read frames and labels, use the transform functions helperModClassReadFrame
and helperModClassReadLabel. Use readall with the "UseParallel" option set to true to enable
parallel processing of the transform functions, if you have Parallel Computing Toolbox license.
Because the readall function, by default, concatenates the output of the read function over the first
dimension, return the frames in a cell array and manually concatenate over the fourth dimension.

% Read the training and validation frames into the memory
pctExists = parallelComputingLicenseExists();
trainFrames = transform(trainDSTrans, @helperModClassReadFrame);
rxTrainFrames = readall(trainFrames,"UseParallel",pctExists);
rxTrainFrames = cat(4, rxTrainFrames{:});
validFrames = transform(validDSTrans, @helperModClassReadFrame);
rxValidFrames = readall(validFrames,"UseParallel",pctExists);
rxValidFrames = cat(4, rxValidFrames{:});

% Read the training and validation labels into the memory
trainLabels = transform(trainDSTrans, @helperModClassReadLabel);
rxTrainLabels = readall(trainLabels,"UseParallel",pctExists);
validLabels = transform(validDSTrans, @helperModClassReadLabel);
rxValidLabels = readall(validLabels,"UseParallel",pctExists);
testFrames = transform(testDSTrans, @helperModClassReadFrame);
rxTestFrames = readall(testFrames,"UseParallel",pctExists);
rxTestFrames = cat(4, rxTestFrames{:});

% Read the test labels into the memory
YPred = transform(testDSTrans, @helperModClassReadLabel);
rxTestLabels = readall(YPred,"UseParallel",pctExists);

Create Target Object

Create a target object for your target device that has a vendor name and an interface to connect your
target device to the host computer. Interface options are JTAG (default) and Ethernet. Vendor options
are Intel or Xilinx. To program the device, use the installed Xilinx Vivado Design Suite over an
Ethernet connection.

hT = dlhdl.Target('Xilinx', Interface = 'Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained series network trainedAudioNet as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Zynq UltraScale+ MPSoC ZCU102 board.
The bitstream uses a single data type.

hW = dlhdl.Workflow(Network = trainedNet, Bitstream = 'zcu102_single', Target = hT);
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Compile trainedModulationClassification Network

To compile the trainedNet series network, run the compile function of the dlhdl.Workflow
object.

compile(hW)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### The network includes the following layers:
     1   'Input Layer'   Image Input             1×1024×2 images                                                   (SW Layer)
     2   'CNN1'          Convolution             16 1×8×2 convolutions with stride [1  1] and padding 'same'       (HW Layer)
     3   'BN1'           Batch Normalization     Batch normalization with 16 channels                              (HW Layer)
     4   'ReLU1'         ReLU                    ReLU                                                              (HW Layer)
     5   'MaxPool1'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
     6   'CNN2'          Convolution             24 1×8×16 convolutions with stride [1  1] and padding 'same'      (HW Layer)
     7   'BN2'           Batch Normalization     Batch normalization with 24 channels                              (HW Layer)
     8   'ReLU2'         ReLU                    ReLU                                                              (HW Layer)
     9   'MaxPool2'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
    10   'CNN3'          Convolution             32 1×8×24 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    11   'BN3'           Batch Normalization     Batch normalization with 32 channels                              (HW Layer)
    12   'ReLU3'         ReLU                    ReLU                                                              (HW Layer)
    13   'MaxPool3'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
    14   'CNN4'          Convolution             48 1×8×32 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    15   'BN4'           Batch Normalization     Batch normalization with 48 channels                              (HW Layer)
    16   'ReLU4'         ReLU                    ReLU                                                              (HW Layer)
    17   'MaxPool4'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
    18   'CNN5'          Convolution             64 1×8×48 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    19   'BN5'           Batch Normalization     Batch normalization with 64 channels                              (HW Layer)
    20   'ReLU5'         ReLU                    ReLU                                                              (HW Layer)
    21   'MaxPool5'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
    22   'CNN6'          Convolution             96 1×8×64 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    23   'BN6'           Batch Normalization     Batch normalization with 96 channels                              (HW Layer)
    24   'ReLU6'         ReLU                    ReLU                                                              (HW Layer)
    25   'AP1'           Average Pooling         1×32 average pooling with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    26   'FC1'           Fully Connected         11 fully connected layer                                          (HW Layer)
    27   'SoftMax'       Softmax                 softmax                                                           (HW Layer)
    28   'Output'        Classification Output   crossentropyex with '16QAM' and 10 other classes                  (SW Layer)
                                                                                                                 
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool1' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool2' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool3' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool4' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool5' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Notice: The layer 'Input Layer' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'SoftMax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'Output' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: CNN1>>ReLU6 ...
### Compiling layer group: CNN1>>ReLU6 ... complete.
### Compiling layer group: AP1 ...
### Compiling layer group: AP1 ... complete.
### Compiling layer group: FC1 ...
### Compiling layer group: FC1 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 

10 Featured Examples

10-220



    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00c00000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02800000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02c00000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x03000000"     "4.0 MB"        
    "EndOffset"                 "0x03400000"     "Total: 52.0 MB"

### Network compilation complete.

ans = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Zynq® UltraScale+™ MPSoC ZCU102 hardware, run the deploy
function of the dlhdl.Workflow object. This function uses the output of the compile function to
program the FPGA board by using the programming file.The function also downloads the network
weights and biases. The deploy function verifies the Xilinx Vivado tool and the supported tool version.
It then starts programming the FPGA device by using the bitstream, displays progress messages, and
the time it takes to deploy the network.

deploy(hW)

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 11-Nov-2021 15:39:14
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 11-Nov-2021 15:39:14

Results

Classify five inputs from the test data set and compare the prediction results to the classification
results from the Deep Learning Toolbox™. The YPred variable is the classification results from the
Deep learning Toolbox™. The fpga_prediction variable is the classification result from the FPGA.

numtestFrames = size(rxTestFrames,4);
numView = 5;
listIndex = randperm(numtestFrames,numView);
testDataBatch = rxTestFrames(:,:,:,listIndex);
YPred = classify(trainedNet,testDataBatch);
[scores,speed] = predict(hW,testDataBatch, Profile ='on');

### Finished writing input activations.
### Running in multi-frame mode with 5 inputs.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
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                         -------------             -------------              ---------        ---------       ---------
Network                     656546                  0.00298                       5            3248357            338.6
    CNN1                     11922                  0.00005 
    MaxPool1                 33524                  0.00015 
    CNN2                     16136                  0.00007 
    MaxPool2                 74772                  0.00034 
    CNN3                     11929                  0.00005 
    MaxPool3                 79074                  0.00036 
    CNN4                      8185                  0.00004 
    MaxPool4                112135                  0.00051 
    CNN5                      6866                  0.00003 
    MaxPool5                145626                  0.00066 
    CNN6                      5077                  0.00002 
    AP1                     144501                  0.00066 
    FC1                       6763                  0.00003 
 * The clock frequency of the DL processor is: 220MHz

[~,idx] = max(scores, [],2);
fpga_prediction = trainedNet.Layers(end).Classes(idx);

Compare the prediction results from Deep Learning Toolbox™ and the FPGA side by side. The
prediction results from the FPGA match the prediction results from Deep Learning Toolbox™. In this
table, the ground truth prediction is the Deep Learning Toolbox™ prediction.

fprintf('%12s %24s\n','Ground Truth','FPGA Prediction');for i= 1:size(fpga_prediction,1)
fprintf('%s %24s\n',YPred(i),fpga_prediction(i)); end

Ground Truth          FPGA Prediction

PAM4                     PAM4
BPSK                     BPSK
DSB-AM                   DSB-AM
SSB-AM                   SSB-AM
8PSK                     8PSK
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More About
• “Prototype Deep Learning Networks on FPGA and SoC Devices” on page 5-2
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Deploy Simple Adder Network by using MATLAB Deployment
Script and Deployment Instructions File

This example shows how to create a .dln file for deploying a pretrained adder network. Deploy and
initialize the generated deep learning processor IP core and adder network by using a MATLAB®
deployment utility script to parse the generated .dln file.

Prerequisites

• Intel® Arria®10 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Intel® FPGA and SoC
• Deep Learning HDL Toolbox™
• Deep learning Toolbox™
• HDL Verifier™

Introduction

Generate a file that has instructions to communicate with the deployed deep learning processor IP
core by using Deep Learning HDL Toolbox™. Initialize the deployed deep learning processor IP core
without a MATLAB® connection by using a utility to parse and execute the instructions in the
generated file. Use the example MATLAB® utility, MATLABDeploymentUtility.m to create your
own custom utility. To deploy and initialize the generated deep learning processor IP core:

1 Create a .dln binary file.
2 Deploy the .dln file by using the MATLAB® utility script file.
3 Retrieve the prediction results by using MATLAB and the predict method.

Create Binary File

Create a dlhdl.Target object to deploy to a file. Provide the file name with '.dln' extension.
Filename is an optional parameter here. If FileName is not provided, the generated file name is the
same as the name of the object in the Bitstream argument of the dlhdl.Workflow object.

hTargetFile = dlhdl.Target('Intel','Interface','File','Filename','AdderNWdeploymentData.dln');

Create a simple adder network and an object of the dlhdl.Workflow class.

image = randi(255, [3,3,4]);
% create adder only network
inLayer = imageInputLayer(size(image), 'Name', 'data', 'Normalization', 'none');
addLayer = additionLayer(2, 'Name', 'add');
outLayer = regressionLayer('Name','output');
lgraph = layerGraph([inLayer, addLayer, outLayer]);
lgraph = connectLayers(lgraph, 'data', 'add/in2');
snet = assembleNetwork(lgraph);
hW = dlhdl.Workflow('network', snet, 'Bitstream', 'arria10soc_single','Target',hTargetFile);

Generate the network weights and biases, deployment instructions by using the compile method of
the dlhdl.Workflow object.

hW.compile
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### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream arria10soc_single.
### The network includes the following layers:
     1   'data'     Image Input         3×3×4 images                       (SW Layer)
     2   'add'      Addition            Element-wise addition of 2 inputs  (HW Layer)
     3   'output'   Regression Output   mean-squared-error                 (SW Layer)
                                                                         
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'output' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "0.0 MB"        
    "SystemBufferOffset"        "0x00800000"     "20.0 MB"       
    "InstructionDataOffset"     "0x01c00000"     "4.0 MB"        
    "EndOffset"                 "0x02000000"     "Total: 32.0 MB"

### Network compilation complete.

ans = struct with fields:
             weights: []
        instructions: [1×1 struct]
           registers: []
    syncInstructions: [1×1 struct]
        constantData: {}

To generate .dln file use the deploy method of the dlhdl.Workflow object.

hW.deploy

WR@ADDR: 0x00000000 Len: 1: 0x00000001
WR@ADDR: 0x00000008 Len: 1: 0x80000000
WR@ADDR: 0x0000000c Len: 1: 0x80000000
WR@ADDR: 0x00000010 Len: 1: 0x80000000
WR@ADDR: 0x00000014 Len: 1: 0x80000000
WR@ADDR: 0x00000018 Len: 1: 0x80000000
WR@ADDR: 0x00000340 Len: 1: 0x01C00000
WR@ADDR: 0x00000348 Len: 1: 0x00000006
WR@ADDR: 0x00000338 Len: 1: 0x00000001
WR@ADDR: 0x0000033c Len: 1: 0x00C00000
WR@ADDR: 0x00000308 Len: 1: 0x01C00018
WR@ADDR: 0x0000030c Len: 1: 0x00000070
WR@ADDR: 0x00000224 Len: 1: 0x00000000
WR@ADDR: 0x81c00000 Len: 118: 0x00000001
WR@ADDR: 0x00000228 Len: 1: 0x00000000
WR@ADDR: 0x00000228 Len: 1: 0x00000001
WR@ADDR: 0x00000228 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0000000B
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0x5EECE9BF
WR@ADDR: 0x00000160 Len: 1: 0x00000001
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WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0001000B
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0xA6607FD1
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0002000B
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0xE69958D6
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0003000B
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0xCE9B0C98
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0000000A
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0xE306BC8E
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0001000A
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0x6D1D3062
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0002000A
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0x5E0BE35F
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0003000A
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0x8E5097FB
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0004000A
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0xE9C840AC
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0005000A
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0x742F745C
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0006000A
WR@ADDR: 0x00000164 Len: 1: 0x00000000
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WR@ADDR: 0x00000168 Len: 1: 0x725F612A
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000
WR@ADDR: 0x00000140 Len: 1: 0x00000001
WR@ADDR: 0x0000014c Len: 1: 0x0007000A
WR@ADDR: 0x00000164 Len: 1: 0x00000000
WR@ADDR: 0x00000168 Len: 1: 0x7014FDA9
WR@ADDR: 0x00000160 Len: 1: 0x00000001
WR@ADDR: 0x00000160 Len: 1: 0x00000000

The generated .dln file is a binary file. All the data inside the file is in hex format.

Structure of Generated .dln File

The data inside the binary file is of strings and uint32 bit format. All the strings are NULL
terminated. This image shows a section of the generated .dln file.

The binary file consists of:

• Header section which consists of Date and time the file was generated and some important
information like DL IP Base address, DL IP Address range, DDR Base address and DDR address
range.

• Start of Data(SOD) section indicates start of instructions to read and write data.
• Data section with AXI read and write transactions.
• An End of data(EOD) command indicates the end of the file.

For more information about the binary file structure, see “Initialize Deployed Deep Learning
Processor Without Using a MATLAB Connection” on page 5-9.
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Deploy Bitstream and .dln file using MATLAB deployment utility

Setup Xilinx vivado tool path before programming the bitstream. To use JTAG,Install Xilinx™ Vivado™
Design Suite 2020.1. To set the Xilinx Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.1\bin\vivado.bat');
hTarget1 = dlhdl.Target('Intel','Interface','JTAG');
hW1 = dlhdl.Workflow('network', snet, 'Bitstream', 'arria10soc_single','Target',hTarget1);
% Program BitStream at this point. Because to transfer data using FPGAIO i.e, Write/Read FPGA must be programmed before Wr/Rd through FPGAIO
hW1.deploy('ProgramBitstream',true,'ProgramNetwork',false);

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.

Deploy .dln file using MATLAB deployment utility:

Use the MATLAB deployment utility script to extract the instructions from the binary
file(generated .dln file) and program the FPGA. The deployment utility script:

• Reads the header details of the .dln file until detection of the 'SOD' command. Line 1 to 35 in the
MATLABDeploymentUtility.m script file read in the header information .Once
SOD is detected actual read and write instructions of compiled network will starts.

• Reads data by extracting the address, length of data to be read and data to read information from
the read packet structure. Use the extracted address, length of data to be read and data to read as
input arguments to the readmemory function.

• Write data by extracting the write data address and data to write information from the write
packet structure. Use the extracted write data address and data to write as input arguments to
the writememory function.

• Detects the end of data (EOD) command and closes the generated file.

MATLABDeploymentUtility('AdderNWdeploymentData.dln');

WR@ADDR: 0x00000000 Len: 1: 0X00000001
WR@ADDR: 0x00000008 Len: 1: 80000000
WR@ADDR: 0x0000000c Len: 1: 80000000
WR@ADDR: 0x00000010 Len: 1: 80000000
WR@ADDR: 0x00000014 Len: 1: 80000000
WR@ADDR: 0x00000018 Len: 1: 80000000
WR@ADDR: 0x00000340 Len: 1: 0X01C00000
WR@ADDR: 0x00000348 Len: 1: 0X00000006
WR@ADDR: 0x00000338 Len: 1: 0X00000001
WR@ADDR: 0x0000033c Len: 1: 0X00C00000
WR@ADDR: 0x00000308 Len: 1: 0X01C00018
WR@ADDR: 0x0000030c Len: 1: 0X00000070
WR@ADDR: 0x00000224 Len: 1: 0X00000000
WR@ADDR: 0x81c00000 Len: 118: 0X00000001
WR@ADDR: 0x00000228 Len: 1: 0X00000000
WR@ADDR: 0x00000228 Len: 1: 0X00000001
WR@ADDR: 0x00000228 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0000000B
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: 5EECE9BF
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
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WR@ADDR: 0x0000014c Len: 1: 0X0001000B
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: A6607FD1
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0002000B
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: E69958D6
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0003000B
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: CE9B0C98
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0000000A
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: E306BC8E
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0001000A
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: 6D1D3062
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0002000A
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: 5E0BE35F
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0003000A
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: 8E5097FB
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0004000A
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: E9C840AC
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0005000A
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: 742F745C
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0006000A
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: 725F612A
WR@ADDR: 0x00000160 Len: 1: 0X00000001

10 Featured Examples

10-228



WR@ADDR: 0x00000160 Len: 1: 0X00000000
WR@ADDR: 0x00000140 Len: 1: 0X00000001
WR@ADDR: 0x0000014c Len: 1: 0X0007000A
WR@ADDR: 0x00000164 Len: 1: 0X00000000
WR@ADDR: 0x00000168 Len: 1: 7014FDA9
WR@ADDR: 0x00000160 Len: 1: 0X00000001
WR@ADDR: 0x00000160 Len: 1: 0X00000000

Retrieve Prediction Results

Deploy the generated deep learning processor IP core and network by using the MATLAB deployment
utility. Retrieve the prediction results from the deployed deep learning processor and compare them
with the prediction results from the Deep Learning Toolbox™.

hW2 = dlhdl.Workflow('network', snet, 'Bitstream', 'arria10soc_single','Target',hTarget1);
[prediction, ~] = hW2.predict(image,'ProgramBitstream',false,'ProgramNetwork',true);

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream arria10soc_single.
### The network includes the following layers:
     1   'data'     Image Input         3×3×4 images                       (SW Layer)
     2   'add'      Addition            Element-wise addition of 2 inputs  (HW Layer)
     3   'output'   Regression Output   mean-squared-error                 (SW Layer)
                                                                         
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'output' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "0.0 MB"        
    "SystemBufferOffset"        "0x00800000"     "20.0 MB"       
    "InstructionDataOffset"     "0x01c00000"     "4.0 MB"        
    "EndOffset"                 "0x02000000"     "Total: 32.0 MB"

### Network compilation complete.

### Finished writing input activations.
### Running single input activation.

Even though we provide 'ProgramNetwork' as 'true' in the above prediction function. FPGA remains
programmed with the network instructions deployed through MATLAB deployment utility only. This is
because during Programming network we look for network checksum, if checksum matches with the
previous checksum, network will not be reprogrammed.

% Get DL toolbox output. 
DLToolboxSimulationOutp = snet.predict(image, 'ExecutionEnvironment', 'cpu');

% Verify DL Toolbox prediction result with prediction results for the deployment
% done using MATLAB deployment utility Script
isequal(DLToolboxSimulationOutp,prediction)
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ans = logical
   1

See Also
dlhdl.Target | dlhdl.Workflow | compile | deploy | predict | classify

More About
• “Initialize Deployed Deep Learning Processor Without Using a MATLAB Connection” on page 5-

9
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Human Pose Estimation by Using Segmentation DAG Network
Deployed to FPGA

This example shows how to create, compile, and deploy a dlhdl.Workflow object by using the Deep
Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC. The Workflow object has a
custom trained human pose estimation network as the network object. The network detects and
outputs poses of people present in an input image of size 256-by-192. To train the network, see
Estimate Body Pose Using Deep Learning.

The goal of body pose estimation is to identify the location of people in an image and the orientation
of their body parts. When multiple people are present in a scene, pose estimation can be more
difficult because of occlusion, body contact, and proximity of similar body parts. Rapidly prototype
and verify the accuracy and performance of your custom trained human pose estimation network by
using Deep Learning HDL Toolbox™ to deploy the network to your target FPGA board and using
MATLAB® to retrieve the prediction results.

Prerequisites

• Zynq® Ultrascale+™ MPSoC ZCU102 Evaluation Kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx™ FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load Pretrained Pose Estimation Network

To load the pretrained Directed Acyclic Graph (DAG) network, enter:

net = getPoseEstimationNetwork

Fetching PoseEstimationNetwork.zip (55 MB)...
Fetching PoseEstimationNetwork.zip (55 MB)

net = 
  DAGNetwork with properties:

         Layers: [75×1 nnet.cnn.layer.Layer]
    Connections: [82×2 table]
     InputNames: {'data'}
    OutputNames: {'RegressionLayer_conv15_fwd'}

Use the analyzeNetwork function to obtain information about the 75 layers in the DAG network.

analyzeNetwork(net)

Create Target Object

Use the dlhdl.Target class to create a target object that has a custom name for your target device
and an interface to connect your target device to the host computer. Interface options are JTAG
(default) and Ethernet. To use JTAG, install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx
Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');
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hTarget = dlhdl.Target('Xilinx', Interface = 'Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. Specify the saved pretrained pose estimation
network, net, as the network object. Make sure that the bitstream name matches the data type and
the FPGA board that you are targeting. In this example, the target FPGA board is the Xilinx ZCU102
SoC board and the bitstream uses the single data type.

hW = dlhdl.Workflow(Network = net, Bitstream = 'zcu102_single', Target = hTarget);

Compile Workflow Object

To compile the Pose Estimation Network, run the compile function of the dlhdl.Workflow object.

dn = compile(hW);

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### The network includes the following layers:
     1   'data'                         Image Input              256×192×3 images with 'zscore' normalization                                (SW Layer)
     2   'conv1'                        Convolution              64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]           (HW Layer)
     3   'bn_conv1'                     Batch Normalization      Batch normalization with 64 channels                                        (HW Layer)
     4   'conv1_relu'                   ReLU                     ReLU                                                                        (HW Layer)
     5   'pool1'                        Max Pooling              3×3 max pooling with stride [2  2] and padding [1  1  1  1]                 (HW Layer)
     6   'res2a_branch2a'               Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]          (HW Layer)
     7   'bn2a_branch2a'                Batch Normalization      Batch normalization with 64 channels                                        (HW Layer)
     8   'res2a_branch2a_relu'          ReLU                     ReLU                                                                        (HW Layer)
     9   'res2a_branch2b'               Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]          (HW Layer)
    10   'bn2a_branch2b'                Batch Normalization      Batch normalization with 64 channels                                        (HW Layer)
    11   'res2a'                        Addition                 Element-wise addition of 2 inputs                                           (HW Layer)
    12   'res2a_relu'                   ReLU                     ReLU                                                                        (HW Layer)
    13   'res2b_branch2a'               Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]          (HW Layer)
    14   'bn2b_branch2a'                Batch Normalization      Batch normalization with 64 channels                                        (HW Layer)
    15   'res2b_branch2a_relu'          ReLU                     ReLU                                                                        (HW Layer)
    16   'res2b_branch2b'               Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]          (HW Layer)
    17   'bn2b_branch2b'                Batch Normalization      Batch normalization with 64 channels                                        (HW Layer)
    18   'res2b'                        Addition                 Element-wise addition of 2 inputs                                           (HW Layer)
    19   'res2b_relu'                   ReLU                     ReLU                                                                        (HW Layer)
    20   'res3a_branch2a'               Convolution              128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]         (HW Layer)
    21   'bn3a_branch2a'                Batch Normalization      Batch normalization with 128 channels                                       (HW Layer)
    22   'res3a_branch2a_relu'          ReLU                     ReLU                                                                        (HW Layer)
    23   'res3a_branch2b'               Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]        (HW Layer)
    24   'bn3a_branch2b'                Batch Normalization      Batch normalization with 128 channels                                       (HW Layer)
    25   'res3a'                        Addition                 Element-wise addition of 2 inputs                                           (HW Layer)
    26   'res3a_relu'                   ReLU                     ReLU                                                                        (HW Layer)
    27   'res3a_branch1'                Convolution              128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]         (HW Layer)
    28   'bn3a_branch1'                 Batch Normalization      Batch normalization with 128 channels                                       (HW Layer)
    29   'res3b_branch2a'               Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]        (HW Layer)
    30   'bn3b_branch2a'                Batch Normalization      Batch normalization with 128 channels                                       (HW Layer)
    31   'res3b_branch2a_relu'          ReLU                     ReLU                                                                        (HW Layer)
    32   'res3b_branch2b'               Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]        (HW Layer)
    33   'bn3b_branch2b'                Batch Normalization      Batch normalization with 128 channels                                       (HW Layer)
    34   'res3b'                        Addition                 Element-wise addition of 2 inputs                                           (HW Layer)
    35   'res3b_relu'                   ReLU                     ReLU                                                                        (HW Layer)
    36   'res4a_branch2a'               Convolution              256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]        (HW Layer)
    37   'bn4a_branch2a'                Batch Normalization      Batch normalization with 256 channels                                       (HW Layer)
    38   'res4a_branch2a_relu'          ReLU                     ReLU                                                                        (HW Layer)
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    39   'res4a_branch2b'               Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]        (HW Layer)
    40   'bn4a_branch2b'                Batch Normalization      Batch normalization with 256 channels                                       (HW Layer)
    41   'res4a'                        Addition                 Element-wise addition of 2 inputs                                           (HW Layer)
    42   'res4a_relu'                   ReLU                     ReLU                                                                        (HW Layer)
    43   'res4a_branch1'                Convolution              256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]        (HW Layer)
    44   'bn4a_branch1'                 Batch Normalization      Batch normalization with 256 channels                                       (HW Layer)
    45   'res4b_branch2a'               Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]        (HW Layer)
    46   'bn4b_branch2a'                Batch Normalization      Batch normalization with 256 channels                                       (HW Layer)
    47   'res4b_branch2a_relu'          ReLU                     ReLU                                                                        (HW Layer)
    48   'res4b_branch2b'               Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]        (HW Layer)
    49   'bn4b_branch2b'                Batch Normalization      Batch normalization with 256 channels                                       (HW Layer)
    50   'res4b'                        Addition                 Element-wise addition of 2 inputs                                           (HW Layer)
    51   'res4b_relu'                   ReLU                     ReLU                                                                        (HW Layer)
    52   'res5a_branch2a'               Convolution              512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]        (HW Layer)
    53   'bn5a_branch2a'                Batch Normalization      Batch normalization with 512 channels                                       (HW Layer)
    54   'res5a_branch2a_relu'          ReLU                     ReLU                                                                        (HW Layer)
    55   'res5a_branch2b'               Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]        (HW Layer)
    56   'bn5a_branch2b'                Batch Normalization      Batch normalization with 512 channels                                       (HW Layer)
    57   'res5a'                        Addition                 Element-wise addition of 2 inputs                                           (HW Layer)
    58   'res5a_relu'                   ReLU                     ReLU                                                                        (HW Layer)
    59   'res5a_branch1'                Convolution              512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]        (HW Layer)
    60   'bn5a_branch1'                 Batch Normalization      Batch normalization with 512 channels                                       (HW Layer)
    61   'res5b_branch2a'               Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]        (HW Layer)
    62   'bn5b_branch2a'                Batch Normalization      Batch normalization with 512 channels                                       (HW Layer)
    63   'res5b_branch2a_relu'          ReLU                     ReLU                                                                        (HW Layer)
    64   'res5b_branch2b'               Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]        (HW Layer)
    65   'bn5b_branch2b'                Batch Normalization      Batch normalization with 512 channels                                       (HW Layer)
    66   'res5b'                        Addition                 Element-wise addition of 2 inputs                                           (HW Layer)
    67   'res5b_relu'                   ReLU                     ReLU                                                                        (HW Layer)
    68   'transposed-conv_1'            Transposed Convolution   256 4×4×512 transposed convolutions with stride [2  2] and cropping 'same'  (HW Layer)
    69   'relu_1'                       ReLU                     ReLU                                                                        (HW Layer)
    70   'transposed-conv_2'            Transposed Convolution   256 4×4×256 transposed convolutions with stride [2  2] and cropping 'same'  (HW Layer)
    71   'relu_2'                       ReLU                     ReLU                                                                        (HW Layer)
    72   'transposed-conv_3'            Transposed Convolution   256 4×4×256 transposed convolutions with stride [2  2] and cropping 'same'  (HW Layer)
    73   'relu_3'                       ReLU                     ReLU                                                                        (HW Layer)
    74   'conv2d_final'                 Convolution              17 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]         (HW Layer)
    75   'RegressionLayer_conv15_fwd'   Regression Output        mean-squared-error                                                          (SW Layer)
                                                                                                                                           
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'transposed-conv_1' of type 'nnet.cnn.layer.TransposedConvolution2DLayer' is split into 'transposed-conv_1_insertZeros' and 'transposed-conv_1'.
### Notice: The layer 'transposed-conv_2' of type 'nnet.cnn.layer.TransposedConvolution2DLayer' is split into 'transposed-conv_2_insertZeros' and 'transposed-conv_2'.
### Notice: The layer 'transposed-conv_3' of type 'nnet.cnn.layer.TransposedConvolution2DLayer' is split into 'transposed-conv_3_insertZeros' and 'transposed-conv_3'.
### Notice: The layer 'data' of type 'ImageInputLayer' is split into an image input layer 'data', an addition layer 'data_norm_add', and a multiplication layer 'data_norm' for hardware normalization.
### Notice: The layer 'RegressionLayer_conv15_fwd' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
### Compiling layer group: conv1>>pool1 ...
### Compiling layer group: conv1>>pool1 ... complete.
### Compiling layer group: res2a_branch2a>>res2a_branch2b ...
### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete.
### Compiling layer group: res2b_branch2a>>res2b_branch2b ...
### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete.
### Compiling layer group: res3a_branch1 ...
### Compiling layer group: res3a_branch1 ... complete.
### Compiling layer group: res3a_branch2a>>res3a_branch2b ...
### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete.
### Compiling layer group: res3b_branch2a>>res3b_branch2b ...
### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete.
### Compiling layer group: res4a_branch1 ...
### Compiling layer group: res4a_branch1 ... complete.
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### Compiling layer group: res4a_branch2a>>res4a_branch2b ...
### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete.
### Compiling layer group: res4b_branch2a>>res4b_branch2b ...
### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete.
### Compiling layer group: res5a_branch1 ...
### Compiling layer group: res5a_branch1 ... complete.
### Compiling layer group: res5a_branch2a>>res5a_branch2b ...
### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete.
### Compiling layer group: res5b_branch2a>>res5b_branch2b ...
### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete.
### Compiling layer group: transposed-conv_1_insertZeros ...
### Compiling layer group: transposed-conv_1_insertZeros ... complete.
### Compiling layer group: transposed-conv_1>>relu_1 ...
### Compiling layer group: transposed-conv_1>>relu_1 ... complete.
### Compiling layer group: transposed-conv_2_insertZeros ...
### Compiling layer group: transposed-conv_2_insertZeros ... complete.
### Compiling layer group: transposed-conv_2>>relu_2 ...
### Compiling layer group: transposed-conv_2>>relu_2 ... complete.
### Compiling layer group: transposed-conv_3_insertZeros ...
### Compiling layer group: transposed-conv_3_insertZeros ... complete.
### Compiling layer group: transposed-conv_3>>conv2d_final ...
### Compiling layer group: transposed-conv_3>>conv2d_final ... complete.

### Allocating external memory buffers:

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "8.0 MB"         
    "SchedulerDataOffset"       "0x02000000"     "8.0 MB"         
    "SystemBufferOffset"        "0x02800000"     "28.0 MB"        
    "InstructionDataOffset"     "0x04400000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x04c00000"     "220.0 MB"       
    "EndOffset"                 "0x12800000"     "Total: 296.0 MB"

### Network compilation complete.

Program Bitstream Into FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. The function also downloads the network weights and biases.
The deploy function starts programming the FPGA device, displays progress messages, and the time
it takes to deploy the network.

deploy(hW) 

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.
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System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 19-Jan-2022 20:13:32

Load Test Image

Read a test image, then crop an image of a person and resize it to the network input size

I = imread('visionteam1.jpg');
bbox = [182 74 303 404];
Iin = imresize(imcrop(I, bbox), [256, 192]);

Run Prediction for One Image

Execute the predict function of the dlhdl.Workflow object.

[prediction, speed] = predict(hW, single(Iin), Profile = 'on');

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                  106379104                  0.48354                       1          106382160              2.1
    data_norm_add           344327                  0.00157 
    data_norm               344408                  0.00157 
    conv1                  2193504                  0.00997 
    pool1                   518554                  0.00236 
    res2a_branch2a          961197                  0.00437 
    res2a_branch2b          960769                  0.00437 
    res2a                   366754                  0.00167 
    res2b_branch2a          961107                  0.00437 
    res2b_branch2b          960940                  0.00437 
    res2b                   366715                  0.00167 
    res3a_branch1           549086                  0.00250 
    res3a_branch2a          542269                  0.00246 
    res3a_branch2b          894520                  0.00407 
    res3a                   183362                  0.00083 
    res3b_branch2a          894609                  0.00407 
    res3b_branch2b          894473                  0.00407 
    res3b                   183403                  0.00083 
    res4a_branch1           485003                  0.00220 
    res4a_branch2a          485309                  0.00221 
    res4a_branch2b          877978                  0.00399 
    res4a                    91703                  0.00042 
    res4b_branch2a          878002                  0.00399 
    res4b_branch2b          878177                  0.00399 
    res4b                    91743                  0.00042 
    res5a_branch1          1063237                  0.00483 
    res5a_branch2a         1063292                  0.00483 
    res5a_branch2b         2064743                  0.00939 
    res5a                    45904                  0.00021 
    res5b_branch2a         2064047                  0.00938 
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    res5b_branch2b         2064894                  0.00939 
    res5b                    45894                  0.00021 
    transposed-conv_1_insertZeros    219876                  0.00100 
    transposed-conv_1      6587071                  0.02994 
    transposed-conv_2_insertZeros    261960                  0.00119 
    transposed-conv_2     16585251                  0.07539 
    transposed-conv_3_insertZeros   1058301                  0.00481 
    transposed-conv_3     55919081                  0.25418 
    conv2d_final           1427387                  0.00649 
 * The clock frequency of the DL processor is: 220MHz

The output data has 17 channels. Each channel corresponds to a heatmap for a unique body part. To
obtain keypoints from the heatmaps, use heatmaps2Keypoints helper function. To visualize the
results, superimpose the detected keypoints on the original image by using the
visualizeKeyPoints helper function. The functions are attached to the example as supporting
files.

keypoints = heatmaps2Keypoints(prediction);
J = visualizeKeyPoints(Iin, keypoints);
imshow(J);

See Also
dlhdl.Target | dlhdl.Workflow | compile | deploy | predict | classify
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Semantic Segmentation of Multispectral Images by Using
Quantized U-Net on FPGA

This example show how to use the Deep Learning HDL Toolbox™ to deploy a quantized U-Net to
perform semantic segmentation on multispectral images. The example uses the pretrained U-Net
network to demonstrate quantization and deployment of the quantized network. Quantization helps
reduce the memory requirement of a deep neural network by quantizing weights, biases, and
activations of network layers to 8-bit scaled integer data types. To retrieve the prediction results, use
MATLAB®.

Deploy the quantized U-Net network by creating a dlhdl.Workflow object. Use the
dlhdl.Workflow object to:

• Generate a list of instructions, weights and biases by using the compile method.
• Generate a programming file for the FPGA by using the deploy method.
• Retrieve the network prediction results and performance by using the predict method.

The quantized network takes in a multispectral input image of size 256-by-256 that has six channels
and outputs a segmentation map where each pixel corresponds to one of 18 classes. This network is
taken from the Semantic Segmentation of Multispectral Images Using Deep Learning example from
the Computer Vision Toolbox™. To train the network, see “Semantic Segmentation of Multispectral
Images Using Deep Learning” (Image Processing Toolbox).

Prerequisites

• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox™ Support Package for Intel FPGA and SoC
• Intel Arria10 SoC Development Kit
• Deep Learning Toolbox™ Model Quantization Library Support Package.
• MATLAB Coder Interface for Deep learning Libraries

Load Pretrained U-Net Network

Load the pretrained Directed Acyclic Graph (DAG) network U-Net using the downloadTrainedUnet
helper function. This function is attached to the example as a supporting file.

imageDir = tempdir;
trainedUNetURL = 'https://www.mathworks.com/supportfiles/vision/data/multispectralUnet.mat';
downloadTrainedUnet(trainedUNetURL, imageDir);
load(fullfile(imageDir, 'trainedUnet', 'multispectralUnet.mat'));

To obtain information about the 58 layers in the DAG network, use the analyzeNetwork function.

analyzeNetwork(net)

Download Data

The pretrained network was trained on a high-resolution multispectral data set [1 on page 10-245].
The image set was captured using a drone over Hamlin Beach State Park, NY. The data contains
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labeled training, validation, and test set that have 18 object class labels. The size of the data file is
~3.0 GB. For calibration and testing of the network, use parts of the training data set.

Download the MAT-file version of the data set by using the downloadHamlinBeachMSIData helper
function. This function is attached to the example as a supporting file.

imageDir = tempdir;
url = 'http://www.cis.rit.edu/~rmk6217/rit18_data.mat';
downloadHamlinBeachMSIData(url, imageDir);

Create Calibration Data

The pretrained U-Net network accepts inputs of size 256-by-256-by-6. The training data in the
downloaded MAT file has a size of 7-by-9393-by-5642. Use the extractMultispectralData helper
function to extract patches of size 256-by-256-by-6 and store them in MAT files for calibration. The
seventh channel in the training data is a binary mask and is not used by the pretrained network for
inference.

For best quantization results, the calibration data must be representative of actual inputs that are
predicted by the U-Net network. Expedite the calibration process by reducing the calibration data set
to six images. Choose the six images so that they form a 2-by-3 grid to represent a large continuous
image.

foldername = 'CalibData';
dataPath = fullfile(imageDir, 'rit18_data', 'rit18_data.mat');
im = extractMultispectralData(foldername, dataPath, 2, 3);

The first three channels of the multispectral training data contain RGB information. Display a
histogram-equalized version of the extracted data.

im = histeq(im(:,:,[3 2 1]));
montage({im});
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Create an imageDatastore object to use for calibration. The patches are loaded from the folder
'CalibData'.

imds = imageDatastore('CalibData', FileExtensions = '.mat', ReadFcn = @matReader);

Create dlquantizer Object

Create a quantized network object by using dlquantizer. Set the target execution environment to
FPGA.

dlQuantObj = dlquantizer(net, ExecutionEnvironment = 'FPGA');

Calibrate Quantized Network

Use the calibrate function to exercise the network by using sample inputs and collect the range
information. The calibrate function exercises the network. The function collects the dynamic
ranges of the weights and biases in the convolution and fully connected layers of the network and in
the dynamic ranges of the activations in all layers of the network. The calibrate function returns a
table.

calibrate(dlQuantObj, imds)

ans=103×5 table
            Optimized Layer Name                 Network Layer Name         Learnables / Activations    MinValue     MaxValue 
    ____________________________________    ____________________________    ________________________    _________    _________
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    {'Encoder-Section-1-Conv-1_Weights'}    {'Encoder-Section-1-Conv-1'}           "Weights"            -0.078472     0.083924
    {'Encoder-Section-1-Conv-1_Bias'   }    {'Encoder-Section-1-Conv-1'}           "Bias"                  0.7125       1.1249
    {'Encoder-Section-1-Conv-2_Weights'}    {'Encoder-Section-1-Conv-2'}           "Weights"             -0.23892      0.24892
    {'Encoder-Section-1-Conv-2_Bias'   }    {'Encoder-Section-1-Conv-2'}           "Bias"                 0.70602        1.381
    {'Encoder-Section-2-Conv-1_Weights'}    {'Encoder-Section-2-Conv-1'}           "Weights"            -0.048319     0.075386
    {'Encoder-Section-2-Conv-1_Bias'   }    {'Encoder-Section-2-Conv-1'}           "Bias"                 0.93696        1.049
    {'Encoder-Section-2-Conv-2_Weights'}    {'Encoder-Section-2-Conv-2'}           "Weights"             -0.18248      0.19105
    {'Encoder-Section-2-Conv-2_Bias'   }    {'Encoder-Section-2-Conv-2'}           "Bias"                 0.85737       1.0482
    {'Encoder-Section-3-Conv-1_Weights'}    {'Encoder-Section-3-Conv-1'}           "Weights"            -0.012313     0.027855
    {'Encoder-Section-3-Conv-1_Bias'   }    {'Encoder-Section-3-Conv-1'}           "Bias"                  0.9723       1.0495
    {'Encoder-Section-3-Conv-2_Weights'}    {'Encoder-Section-3-Conv-2'}           "Weights"             -0.14617      0.13171
    {'Encoder-Section-3-Conv-2_Bias'   }    {'Encoder-Section-3-Conv-2'}           "Bias"                 0.96037       1.0234
    {'Encoder-Section-4-Conv-1_Weights'}    {'Encoder-Section-4-Conv-1'}           "Weights"            -0.006589    0.0069637
    {'Encoder-Section-4-Conv-1_Bias'   }    {'Encoder-Section-4-Conv-1'}           "Bias"                  0.9854       1.0057
    {'Encoder-Section-4-Conv-2_Weights'}    {'Encoder-Section-4-Conv-2'}           "Weights"             -0.10257       0.1018
    {'Encoder-Section-4-Conv-2_Bias'   }    {'Encoder-Section-4-Conv-2'}           "Bias"                 0.99395       1.0025
      ⋮

Create Target Object

Set the synthesis tool path to point to an installed Intel® Quartus® Prime Standard Edition 20.1
executable file. You must have already installed Altera® Quartus II.

% hdlsetuptoolpath(ToolName = 'Altera Quartus II', ToolPath = 'C:\intel\20.1\quartus\bin\quartus.exe');

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG (default) and Ethernet.

hTarget = dlhdl.Target('Intel', Interface = 'JTAG');

Create Workflow Object

Create an object of the dlhdl.Workflow class. Specify the network and bitstream name. Specify the
quantized network object dlQuantObj as the network. Make sure that the bitstream name matches
the data type and the FPGA board that you are targeting. In this example, the target FPGA board is
the Intel Arria 10 SoC board. The bitstream uses an int8 data type.

hW = dlhdl.Workflow(Network = dlQuantObj, Bitstream = 'arria10soc_int8', Target = hTarget);

Compile Workflow Object

To compile the U-Net network, run the compile function of the dlhdl.Workflow object.

dn = compile(hW)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream arria10soc_int8.
### The network includes the following layers:
     1   'ImageInputLayer'                        Image Input                  256×256×6 images with 'zerocenter' normalization                                   (SW Layer)
     2   'Encoder-Section-1-Conv-1'               Convolution                  64 3×3×6 convolutions with stride [1  1] and padding [1  1  1  1]                  (HW Layer)
     3   'Encoder-Section-1-ReLU-1'               ReLU                         ReLU                                                                               (HW Layer)
     4   'Encoder-Section-1-Conv-2'               Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]                 (HW Layer)
     5   'Encoder-Section-1-ReLU-2'               ReLU                         ReLU                                                                               (HW Layer)
     6   'Encoder-Section-1-MaxPool'              Max Pooling                  2×2 max pooling with stride [2  2] and padding [0  0  0  0]                        (HW Layer)
     7   'Encoder-Section-2-Conv-1'               Convolution                  128 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]                (HW Layer)
     8   'Encoder-Section-2-ReLU-1'               ReLU                         ReLU                                                                               (HW Layer)
     9   'Encoder-Section-2-Conv-2'               Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
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    10   'Encoder-Section-2-ReLU-2'               ReLU                         ReLU                                                                               (HW Layer)
    11   'Encoder-Section-2-MaxPool'              Max Pooling                  2×2 max pooling with stride [2  2] and padding [0  0  0  0]                        (HW Layer)
    12   'Encoder-Section-3-Conv-1'               Convolution                  256 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
    13   'Encoder-Section-3-ReLU-1'               ReLU                         ReLU                                                                               (HW Layer)
    14   'Encoder-Section-3-Conv-2'               Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
    15   'Encoder-Section-3-ReLU-2'               ReLU                         ReLU                                                                               (HW Layer)
    16   'Encoder-Section-3-MaxPool'              Max Pooling                  2×2 max pooling with stride [2  2] and padding [0  0  0  0]                        (HW Layer)
    17   'Encoder-Section-4-Conv-1'               Convolution                  512 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
    18   'Encoder-Section-4-ReLU-1'               ReLU                         ReLU                                                                               (HW Layer)
    19   'Encoder-Section-4-Conv-2'               Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
    20   'Encoder-Section-4-ReLU-2'               ReLU                         ReLU                                                                               (HW Layer)
    21   'Encoder-Section-4-DropOut'              Dropout                      50% dropout                                                                        (HW Layer)
    22   'Encoder-Section-4-MaxPool'              Max Pooling                  2×2 max pooling with stride [2  2] and padding [0  0  0  0]                        (HW Layer)
    23   'Mid-Conv-1'                             Convolution                  1024 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]              (HW Layer)
    24   'Mid-ReLU-1'                             ReLU                         ReLU                                                                               (HW Layer)
    25   'Mid-Conv-2'                             Convolution                  1024 3×3×1024 convolutions with stride [1  1] and padding [1  1  1  1]             (HW Layer)
    26   'Mid-ReLU-2'                             ReLU                         ReLU                                                                               (HW Layer)
    27   'Mid-DropOut'                            Dropout                      50% dropout                                                                        (HW Layer)
    28   'Decoder-Section-1-UpConv'               Transposed Convolution       512 2×2×1024 transposed convolutions with stride [2  2] and cropping [0  0  0  0]  (HW Layer)
    29   'Decoder-Section-1-UpReLU'               ReLU                         ReLU                                                                               (HW Layer)
    30   'Decoder-Section-1-DepthConcatenation'   Depth concatenation          Depth concatenation of 2 inputs                                                    (HW Layer)
    31   'Decoder-Section-1-Conv-1'               Convolution                  512 3×3×1024 convolutions with stride [1  1] and padding [1  1  1  1]              (HW Layer)
    32   'Decoder-Section-1-ReLU-1'               ReLU                         ReLU                                                                               (HW Layer)
    33   'Decoder-Section-1-Conv-2'               Convolution                  512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
    34   'Decoder-Section-1-ReLU-2'               ReLU                         ReLU                                                                               (HW Layer)
    35   'Decoder-Section-2-UpConv'               Transposed Convolution       256 2×2×512 transposed convolutions with stride [2  2] and cropping [0  0  0  0]   (HW Layer)
    36   'Decoder-Section-2-UpReLU'               ReLU                         ReLU                                                                               (HW Layer)
    37   'Decoder-Section-2-DepthConcatenation'   Depth concatenation          Depth concatenation of 2 inputs                                                    (HW Layer)
    38   'Decoder-Section-2-Conv-1'               Convolution                  256 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
    39   'Decoder-Section-2-ReLU-1'               ReLU                         ReLU                                                                               (HW Layer)
    40   'Decoder-Section-2-Conv-2'               Convolution                  256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
    41   'Decoder-Section-2-ReLU-2'               ReLU                         ReLU                                                                               (HW Layer)
    42   'Decoder-Section-3-UpConv'               Transposed Convolution       128 2×2×256 transposed convolutions with stride [2  2] and cropping [0  0  0  0]   (HW Layer)
    43   'Decoder-Section-3-UpReLU'               ReLU                         ReLU                                                                               (HW Layer)
    44   'Decoder-Section-3-DepthConcatenation'   Depth concatenation          Depth concatenation of 2 inputs                                                    (HW Layer)
    45   'Decoder-Section-3-Conv-1'               Convolution                  128 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
    46   'Decoder-Section-3-ReLU-1'               ReLU                         ReLU                                                                               (HW Layer)
    47   'Decoder-Section-3-Conv-2'               Convolution                  128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]               (HW Layer)
    48   'Decoder-Section-3-ReLU-2'               ReLU                         ReLU                                                                               (HW Layer)
    49   'Decoder-Section-4-UpConv'               Transposed Convolution       64 2×2×128 transposed convolutions with stride [2  2] and cropping [0  0  0  0]    (HW Layer)
    50   'Decoder-Section-4-UpReLU'               ReLU                         ReLU                                                                               (HW Layer)
    51   'Decoder-Section-4-DepthConcatenation'   Depth concatenation          Depth concatenation of 2 inputs                                                    (HW Layer)
    52   'Decoder-Section-4-Conv-1'               Convolution                  64 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]                (HW Layer)
    53   'Decoder-Section-4-ReLU-1'               ReLU                         ReLU                                                                               (HW Layer)
    54   'Decoder-Section-4-Conv-2'               Convolution                  64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]                 (HW Layer)
    55   'Decoder-Section-4-ReLU-2'               ReLU                         ReLU                                                                               (HW Layer)
    56   'Final-ConvolutionLayer'                 Convolution                  18 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]                 (HW Layer)
    57   'Softmax-Layer'                          Softmax                      softmax                                                                            (HW Layer)
    58   'Segmentation-Layer'                     Pixel Classification Layer   Cross-entropy loss with 'Road Markings', 'Tree', and 16 other classes              (SW Layer)
                                                                                                                                                                
### Notice: The layer 'Decoder-Section-1-UpConv' of type 'nnet.cnn.layer.TransposedConvolution2DLayer' is split into an image input layer 'Decoder-Section-1-UpConv_insertZeros' and an addition layer 'Decoder-Section-1-UpConv' for normalization on hardware.
### Notice: The layer 'Decoder-Section-2-UpConv' of type 'nnet.cnn.layer.TransposedConvolution2DLayer' is split into an image input layer 'Decoder-Section-2-UpConv_insertZeros' and an addition layer 'Decoder-Section-2-UpConv' for normalization on hardware.
### Notice: The layer 'Decoder-Section-3-UpConv' of type 'nnet.cnn.layer.TransposedConvolution2DLayer' is split into an image input layer 'Decoder-Section-3-UpConv_insertZeros' and an addition layer 'Decoder-Section-3-UpConv' for normalization on hardware.
### Notice: The layer 'Decoder-Section-4-UpConv' of type 'nnet.cnn.layer.TransposedConvolution2DLayer' is split into an image input layer 'Decoder-Section-4-UpConv_insertZeros' and an addition layer 'Decoder-Section-4-UpConv' for normalization on hardware.
### Notice: The layer 'ImageInputLayer' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'Softmax-Layer' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'Segmentation-Layer' with type 'nnet.cnn.layer.PixelClassificationLayer' is implemented in software.
### Compiling layer group: Encoder-Section-1-Conv-1>>Encoder-Section-1-ReLU-2 ...
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### Compiling layer group: Encoder-Section-1-Conv-1>>Encoder-Section-1-ReLU-2 ... complete.
### Compiling layer group: Encoder-Section-1-MaxPool>>Encoder-Section-2-ReLU-2 ...
### Compiling layer group: Encoder-Section-1-MaxPool>>Encoder-Section-2-ReLU-2 ... complete.
### Compiling layer group: Encoder-Section-2-MaxPool>>Encoder-Section-3-ReLU-2 ...
### Compiling layer group: Encoder-Section-2-MaxPool>>Encoder-Section-3-ReLU-2 ... complete.
### Compiling layer group: Encoder-Section-3-MaxPool>>Encoder-Section-4-ReLU-2 ...
### Compiling layer group: Encoder-Section-3-MaxPool>>Encoder-Section-4-ReLU-2 ... complete.
### Compiling layer group: Encoder-Section-4-MaxPool>>Mid-ReLU-2 ...
### Compiling layer group: Encoder-Section-4-MaxPool>>Mid-ReLU-2 ... complete.
### Compiling layer group: Decoder-Section-1-UpConv_insertZeros ...
### Compiling layer group: Decoder-Section-1-UpConv_insertZeros ... complete.
### Compiling layer group: Decoder-Section-1-UpConv>>Decoder-Section-1-UpReLU ...
### Compiling layer group: Decoder-Section-1-UpConv>>Decoder-Section-1-UpReLU ... complete.
### Compiling layer group: Decoder-Section-1-Conv-1>>Decoder-Section-1-ReLU-2 ...
### Compiling layer group: Decoder-Section-1-Conv-1>>Decoder-Section-1-ReLU-2 ... complete.
### Compiling layer group: Decoder-Section-2-UpConv_insertZeros ...
### Compiling layer group: Decoder-Section-2-UpConv_insertZeros ... complete.
### Compiling layer group: Decoder-Section-2-UpConv>>Decoder-Section-2-UpReLU ...
### Compiling layer group: Decoder-Section-2-UpConv>>Decoder-Section-2-UpReLU ... complete.
### Compiling layer group: Decoder-Section-2-Conv-1>>Decoder-Section-2-ReLU-2 ...
### Compiling layer group: Decoder-Section-2-Conv-1>>Decoder-Section-2-ReLU-2 ... complete.
### Compiling layer group: Decoder-Section-3-UpConv_insertZeros ...
### Compiling layer group: Decoder-Section-3-UpConv_insertZeros ... complete.
### Compiling layer group: Decoder-Section-3-UpConv>>Decoder-Section-3-UpReLU ...
### Compiling layer group: Decoder-Section-3-UpConv>>Decoder-Section-3-UpReLU ... complete.
### Compiling layer group: Decoder-Section-3-Conv-1>>Decoder-Section-3-ReLU-2 ...
### Compiling layer group: Decoder-Section-3-Conv-1>>Decoder-Section-3-ReLU-2 ... complete.
### Compiling layer group: Decoder-Section-4-UpConv_insertZeros ...
### Compiling layer group: Decoder-Section-4-UpConv_insertZeros ... complete.
### Compiling layer group: Decoder-Section-4-UpConv>>Decoder-Section-4-UpReLU ...
### Compiling layer group: Decoder-Section-4-UpConv>>Decoder-Section-4-UpReLU ... complete.
### Compiling layer group: Decoder-Section-4-Conv-1>>Final-ConvolutionLayer ...
### Compiling layer group: Decoder-Section-4-Conv-1>>Final-ConvolutionLayer ... complete.

### Allocating external memory buffers:

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "16.0 MB"        
    "OutputResultOffset"        "0x01000000"     "48.0 MB"        
    "SchedulerDataOffset"       "0x04000000"     "24.0 MB"        
    "SystemBufferOffset"        "0x05800000"     "28.0 MB"        
    "InstructionDataOffset"     "0x07400000"     "36.0 MB"        
    "ConvWeightDataOffset"      "0x09800000"     "540.0 MB"       
    "EndOffset"                 "0x2b400000"     "Total: 692.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}
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Program Bitstream into FPGA and Download Network Weights

To deploy the network on the Intel Arria10 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the
FPGA board by using the programming file. The function also loads the network weights and biases
into the device. The deploy function starts programming the FPGA device, displays progress
messages, and the time it takes to deploy the network.

deploy(hW)

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 14-Dec-2021 23:40:29

Load Example Images

Extract patches for inference on FPGA by using the extractMultispectralData helper function
and store them in MAT files. Create 20 patches of size 256-by-256-by-6 so that they form a 4-by-5 grid
to represent a large input image.

foldername = 'TestData';
dataPath = fullfile(imageDir, 'rit18_data', 'rit18_data.mat');
extractMultispectralData(foldername, dataPath, 4, 5);

Load the extracted data into testData by using the helperConcatenateMultispectralData
helper function. It concatenates inputs along the fourth dimension for multiframe prediction by using
the dlhdl.Workflow object. The function is attached to the example as a supporting file.

testData = helperConcatenateMultispectralData(foldername);

Run Prediction

Execute the predict function of the dlhdl.Workflow object and display the prediction results
for testData. Because the input is concatenated along the fourth dimension, the predictions occur
simultaneously.

[prediction, speed] = predict(hW, testData(:,:,1:6,:), 'Profile', 'on');

### Finished writing input activations.
### Running in multi-frame mode with 20 inputs.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                  175391449                  1.16928                      20         3507877237              0.9
    Encoder-Section-1-Conv-1   1216888                  0.00811 
    Encoder-Section-1-Conv-2   2898182                  0.01932 
    Encoder-Section-1-MaxPool   5225243                  0.03483 
    Encoder-Section-2-Conv-1    689902                  0.00460 
    Encoder-Section-2-Conv-2   2604963                  0.01737 
    Encoder-Section-2-MaxPool   4862763                  0.03242 
    Encoder-Section-3-Conv-1    416523                  0.00278 
    Encoder-Section-3-Conv-2   2406534                  0.01604 
    Encoder-Section-3-MaxPool   6432961                  0.04289 
    Encoder-Section-4-Conv-1    345878                  0.00231 
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    Encoder-Section-4-Conv-2   4062950                  0.02709 
    Encoder-Section-4-MaxPool   7270617                  0.04847 
    Mid-Conv-1             1298161                  0.00865 
    Mid-Conv-2            14902377                  0.09935 
    Decoder-Section-1-UpConv_insertZeros  14894578                  0.09930 
    Decoder-Section-1-UpConv   6431694                  0.04288 
    Decoder-Section-1-Conv-1   1842230                  0.01228 
    Decoder-Section-1-Conv-2   9572771                  0.06382 
    Decoder-Section-2-UpConv_insertZeros  10785828                  0.07191 
    Decoder-Section-2-UpConv   4863034                  0.03242 
    Decoder-Section-2-Conv-1   3103690                  0.02069 
    Decoder-Section-2-Conv-2  10455339                  0.06970 
    Decoder-Section-3-UpConv_insertZeros  10361041                  0.06907 
    Decoder-Section-3-UpConv   5225305                  0.03484 
    Decoder-Section-3-Conv-1   4555619                  0.03037 
    Decoder-Section-3-Conv-2  11171105                  0.07447 
    Decoder-Section-4-UpConv_insertZeros  11466232                  0.07644 
    Decoder-Section-4-UpConv   5907915                  0.03939 
    Decoder-Section-4-Conv-1   2673353                  0.01782 
    Decoder-Section-4-Conv-2   1539401                  0.01026 
    Final-ConvolutionLayer   5908123                  0.03939 
 * The clock frequency of the DL processor is: 150MHz

The output of hW.predict is of shape 256-by-256-by-18-by-20, where the outputs are concatenated
along the fourth dimension. The 20 test images were created from a 1024-by-1280-by-6 section of the
training data. The inputs and outputs are rearranged by using helperArrangeInput and
helperArrangeOutput functions to display the prediction results. The functions are attached to the
example as supporting files.

testImage = helperArrangeInput(testData, 4, 5);
segmentedImage = helperArrangeOutput(prediction, 4, 5);

Display the Prediction Results

Overlay the segmented image on the histogram-equalized RGB test image and display the prediction
results.

classNames = [ ...
    "RoadMarkings", "Tree", "Building", "Vehicle", "Person", ...
    "LifeguardChair", "PicnicTable", "BlackWoodPanel", ...
    "WhiteWoodPanel", "OrangeLandingPad", "Buoy", "Rocks", ...
    "LowLevelVegetation", "Grass_Lawn", "Sand_Beach", ...
    "Water_Lake", "Water_Pond", "Asphalt"];

cmap = jet(numel(classNames));
N = numel(classNames);
ticks = 1/(N*2):1/N:1;

B = labeloverlay(histeq(testImage(:,:,[3 2 1])), medfilt2(segmentedImage), Transparency = 0.4, Colormap = cmap);

figure
imshow(B);
title('Labeled Test Image')
colorbar('TickLabels', cellstr(classNames), 'Ticks', ticks, 'TickLength', 0, 'TickLabelInterpreter', 'none');
colormap(cmap)
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Optimize Deep Learning Processor Configuration for Network
Performance

This example shows how to generate a deep learning processor configuration and estimate the
performance of a pretrained network. Generate a deep learning processor configuration optimized for
the target frames-per-second value of the network, then generate a custom bitstream by using the
optimized processor configuration.

Load Pretrained Network and Create Processor Configuration

To load a pretrained ResNet-18 network, enter:

net = resnet18;

Create a custom deep learning processor configuration. For more information, see
dlhdl.ProcessorConfig.

hPC = dlhdl.ProcessorConfig;

Estimate Network Performance

Establish the baseline performance of the network, by estimating the performance of the ResNet-18
network. Estimate the performance, by using the estimatePerformance method of the
dlhdl.ProcessorConfig object. The method returns the estimated layer latency, network latency,
and network performance in frames per second.

estimatePerformance(hPC,net);

### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' of type 'ImageInputLayer' is split into an image input layer 'data', an addition layer 'data_norm_add', and a multiplication layer 'data_norm' for hardware normalization.
### The network includes the following layers:
     1   'data'                              Image Input                  224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                             2-D Convolution              64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'conv1_relu'                        ReLU                         ReLU                                                                  (HW Layer)
     4   'pool1'                             2-D Max Pooling              3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     5   'res2a_branch2a'                    2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     6   'res2a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
     7   'res2a_branch2b'                    2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     8   'res2a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
     9   'res2a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    10   'res2b_branch2a'                    2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    11   'res2b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    12   'res2b_branch2b'                    2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    13   'res2b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    14   'res2b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    15   'res3a_branch2a'                    2-D Convolution              128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    16   'res3a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    17   'res3a_branch2b'                    2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    18   'res3a_branch1'                     2-D Convolution              128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    19   'res3a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    20   'res3a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    21   'res3b_branch2a'                    2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    22   'res3b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    23   'res3b_branch2b'                    2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'res3b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
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    25   'res3b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    26   'res4a_branch2a'                    2-D Convolution              256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    27   'res4a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    28   'res4a_branch2b'                    2-D Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    29   'res4a_branch1'                     2-D Convolution              256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    30   'res4a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    31   'res4a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    32   'res4b_branch2a'                    2-D Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'res4b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    34   'res4b_branch2b'                    2-D Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    35   'res4b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    36   'res4b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    37   'res5a_branch2a'                    2-D Convolution              512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    38   'res5a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    39   'res5a_branch2b'                    2-D Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'res5a_branch1'                     2-D Convolution              512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    41   'res5a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res5a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    43   'res5b_branch2a'                    2-D Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    44   'res5b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    45   'res5b_branch2b'                    2-D Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'res5b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    47   'res5b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    48   'pool5'                             2-D Global Average Pooling   2-D global average pooling                                            (HW Layer)
    49   'fc1000'                            Fully Connected              1000 fully connected layer                                            (HW Layer)
    50   'prob'                              Softmax                      softmax                                                               (SW Layer)
    51   'ClassificationLayer_predictions'   Classification Output        crossentropyex with 'tench' and 999 other classes                     (SW Layer)
                                                                                                                                              
### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   21328236                  0.10664                       1           21328236              9.4
    ____data_norm_add       210750                  0.00105 
    ____data_norm           210750                  0.00105 
    ____conv1              2164124                  0.01082 
    ____pool1               515064                  0.00258 
    ____res2a_branch2a      966221                  0.00483 
    ____res2a_branch2b      966221                  0.00483 
    ____res2a               210750                  0.00105 
    ____res2b_branch2a      966221                  0.00483 
    ____res2b_branch2b      966221                  0.00483 
    ____res2b               210750                  0.00105 
    ____res3a_branch1       540861                  0.00270 
    ____res3a_branch2a      540749                  0.00270 
    ____res3a_branch2b      919117                  0.00460 
    ____res3a               105404                  0.00053 
    ____res3b_branch2a      919117                  0.00460 
    ____res3b_branch2b      919117                  0.00460 
    ____res3b               105404                  0.00053 
    ____res4a_branch1       503405                  0.00252 
    ____res4a_branch2a      509261                  0.00255 
    ____res4a_branch2b      905421                  0.00453 
    ____res4a                52724                  0.00026 
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    ____res4b_branch2a      905421                  0.00453 
    ____res4b_branch2b      905421                  0.00453 
    ____res4b                52724                  0.00026 
    ____res5a_branch1       744525                  0.00372 
    ____res5a_branch2a      751693                  0.00376 
    ____res5a_branch2b     1415373                  0.00708 
    ____res5a                26368                  0.00013 
    ____res5b_branch2a     1415373                  0.00708 
    ____res5b_branch2b     1415373                  0.00708 
    ____res5b                26368                  0.00013 
    ____pool5                54594                  0.00027 
    ____fc1000              207351                  0.00104 
 * The clock frequency of the DL processor is: 200MHz

The estimated frames-per-second performance is 9.4 frames per second. To improve the network
performance, you can modify the properties of the custom deep learning processor configuration hPC
or use the optimizeConfigurationForNetwork method. In this example, you use the
optimizeConfigurationForNetwork method. To learn about modifying the properties manually,
see “Effects of Custom Deep Learning Processor Parameters on Performance and Resource
Utilization” on page 8-17.

Generate Optimized Processor Configuration

Optimize the processor configuration by using the optimizeConfigurationForNetwork method.
Use the optional FramesPerSecond name-value argument.

hPC_optimized = optimizeConfigurationForNetwork(hPC,net,FramesPerSecond=10);

### Optimizing processor configuration for deep learning network...

              Deep Learning Processor Estimator Resource Results

                             DSPs          Block RAM*     LUTs(CLB/ALUT)  
                        -------------    -------------    ------------- 
Available                    2520              912           274080
                        -------------    -------------    ------------- 
Total                       438( 18%)        600( 66%)     270396( 99%)
ReferenceDesign               3(  1%)         78(  9%)      35000( 13%)
DL_Processor                435( 18%)        522( 58%)     235396( 86%)
* Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices
### Note: Processing module "conv" property "InputMemorySize" changed from "[227 227 3]" to "[217 217 3]".
### Note: Processing module "conv" property "OutputMemorySize" changed from "[227 227 3]" to "[217 217 3]".
### Note: Processing module "conv" property "SegmentationBlockGeneration" changed from "true" to "false".
### Note: Processing module "fc" property "FCThreadNumber" changed from "4" to "8".
### Note: Processing module "fc" property "WeightAXIDataBitwidth" changed from "128" to "256".
### Note: Processing module "fc" property "SoftmaxBlockGeneration" changed from "false" to "true".

                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'off'
                            ConvThreadNumber: 16
                             InputMemorySize: [217 217 3]
                            OutputMemorySize: [217 217 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
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                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'on'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 8
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

### Optimizing processor configuration for deep learning network complete.

Estimate performance of the ResNet-18 network by using the new optimized deep learning processor
configuration.

estimatePerformance(hPC_optimized,net);

### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' of type 'ImageInputLayer' is split into an image input layer 'data', an addition layer 'data_norm_add', and a multiplication layer 'data_norm' for hardware normalization.
### The network includes the following layers:
     1   'data'                              Image Input                  224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                             2-D Convolution              64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'conv1_relu'                        ReLU                         ReLU                                                                  (HW Layer)
     4   'pool1'                             2-D Max Pooling              3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     5   'res2a_branch2a'                    2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     6   'res2a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
     7   'res2a_branch2b'                    2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     8   'res2a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
     9   'res2a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    10   'res2b_branch2a'                    2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    11   'res2b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    12   'res2b_branch2b'                    2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    13   'res2b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
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    14   'res2b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    15   'res3a_branch2a'                    2-D Convolution              128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    16   'res3a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    17   'res3a_branch2b'                    2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    18   'res3a_branch1'                     2-D Convolution              128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    19   'res3a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    20   'res3a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    21   'res3b_branch2a'                    2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    22   'res3b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    23   'res3b_branch2b'                    2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'res3b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    25   'res3b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    26   'res4a_branch2a'                    2-D Convolution              256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    27   'res4a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    28   'res4a_branch2b'                    2-D Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    29   'res4a_branch1'                     2-D Convolution              256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    30   'res4a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    31   'res4a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    32   'res4b_branch2a'                    2-D Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'res4b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    34   'res4b_branch2b'                    2-D Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    35   'res4b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    36   'res4b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    37   'res5a_branch2a'                    2-D Convolution              512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    38   'res5a_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    39   'res5a_branch2b'                    2-D Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'res5a_branch1'                     2-D Convolution              512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    41   'res5a'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res5a_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    43   'res5b_branch2a'                    2-D Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    44   'res5b_branch2a_relu'               ReLU                         ReLU                                                                  (HW Layer)
    45   'res5b_branch2b'                    2-D Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'res5b'                             Addition                     Element-wise addition of 2 inputs                                     (HW Layer)
    47   'res5b_relu'                        ReLU                         ReLU                                                                  (HW Layer)
    48   'pool5'                             2-D Global Average Pooling   2-D global average pooling                                            (HW Layer)
    49   'fc1000'                            Fully Connected              1000 fully connected layer                                            (HW Layer)
    50   'prob'                              Softmax                      softmax                                                               (HW Layer)
    51   'ClassificationLayer_predictions'   Classification Output        crossentropyex with 'tench' and 999 other classes                     (SW Layer)
                                                                                                                                              
### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

              Deep Learning Processor Estimator Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   19966252                  0.09983                       1           19966252             10.0
    ____data_norm_add       210750                  0.00105 
    ____data_norm           210750                  0.00105 
    ____conv1              2224339                  0.01112 
    ____pool1               632402                  0.00316 
    ____res2a_branch2a     1038708                  0.00519 
    ____res2a_branch2b     1038708                  0.00519 
    ____res2a               210750                  0.00105 
    ____res2b_branch2a     1038708                  0.00519 
    ____res2b_branch2b     1038708                  0.00519 
    ____res2b               210750                  0.00105 
    ____res3a_branch1       630228                  0.00315 
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    ____res3a_branch2a      625092                  0.00313 
    ____res3a_branch2b      919117                  0.00460 
    ____res3a               105404                  0.00053 
    ____res3b_branch2a      919117                  0.00460 
    ____res3b_branch2b      919117                  0.00460 
    ____res3b               105404                  0.00053 
    ____res4a_branch1       503405                  0.00252 
    ____res4a_branch2a      509261                  0.00255 
    ____res4a_branch2b      905421                  0.00453 
    ____res4a                52724                  0.00026 
    ____res4b_branch2a      905421                  0.00453 
    ____res4b_branch2b      905421                  0.00453 
    ____res4b                52724                  0.00026 
    ____res5a_branch1       506957                  0.00253 
    ____res5a_branch2a      514125                  0.00257 
    ____res5a_branch2b      940237                  0.00470 
    ____res5a                26368                  0.00013 
    ____res5b_branch2a      940237                  0.00470 
    ____res5b_branch2b      940237                  0.00470 
    ____res5b                26368                  0.00013 
    ____pool5                54594                  0.00027 
    ____fc1000              103438                  0.00052 
    ____prob                  1262                  0.00001 
 * The clock frequency of the DL processor is: 200MHz

The new estimated frames per second performance is 10 frames per second.

This image shows the comparison between the original processor configuration and the optimized
processor configuration:

The optimized processor configuration has:

• SegmentationBlockGeneration turned off.
• InputMemorySize and OutputMemorySize reduced to [217 217 3].
• SoftMaxBlockGeneration turned on.
• FCThreadNumber increased to 8.
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Generate Optimized Custom Bitstream

Use the optimized custom deep learning processor configuration to build and generate a custom
bitstream. Use the custom bitstream to deploy the pretrained ResNet-18 network to your target FPGA
board.

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');
dlhdl.buildProcessor(hPC_optimized);

See Also
dlhdl.ProcessorConfig | estimatePerformance

More About
• “Generate Custom Bitstream” on page 9-2
• “Estimate Resource Utilization for Custom Processor Configuration” on page 8-10
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Run Sequence-to-Sequence Classification on FPGAs by Using
Deep Learning HDL Toolbox

This example shows how to create, compile, and deploy a long short-term memory (LSTM) network
trained on accelerometer data from human movement by using the Deep Learning HDL Toolbox™
Support Package for Xilinx FPGA and SoC. Use the deployed network to classify human activity based
on sequence input data. Use MATLAB® to retrieve the prediction results from the target device.

The network attached to this example was trained using the “Sequence-to-Sequence Classification
Using Deep Learning”. This example uses sensor data obtained from a smartphone worn on the body.
This example deploys an LSTM network trained to recognize the activity of the wearer given time
series data that represents accelerometer readings in three different directions. The graphs below
show the raw data for these accelerometer readings over time and the resulting classifications. The
training data contains time series data for seven people. Each sequence has three features and varies
in length. The data set contains six training observations and one test observation.

Prerequisites

• Xilinx® Zynq® Ultrascale+™ ZCU102 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained Network

To load the pretrained human body movement network, enter:

load SequenceToSequenceClassification
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View the layers of the network by using the analyzeNetwork function. The function returns a
graphical representation of the network and detailed parameter settings of the layers in the network.

analyzeNetwork(net)

Define FPGA Board Interface

Define the target FPGA board programming interface by using the dlhdl.Target object. Specify
that the interface is for a Xilinx board with an Ethernet interface.

To create the target object, enter:

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado tool
path, enter:

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

Prepare Network for Deployment

Prepare the network for deployment by creating a dlhdl.Workflow object. Specify the network and
bitstream name. Ensure that the bitstream name matches the data type and FPGA board. In this
example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single data
type.

hW = dlhdl.Workflow('network', net, 'Bitstream', 'zcu102_lstm_single','Target',hTarget);

To run the example in a Xilinx ZC706 board, enter:

hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_lstm_single','Target',hTarget);

Compile Network

Run the compile method of the dlhdl.Workflow object to compile the network and generate the
instructions, weights, and biases for deployment. The total number of frames exceeds the default
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value of 30. Set the InputFrameNumberLimit name-value argument to 10000 to run predictions in
chunks of 10,000 frames to prevent timeouts.

dn = compile(hW,'InputFrameNumberLimit',10000)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_lstm_single.
### The network includes the following layers:
     1   'sequenceinput'   Sequence Input          Sequence input with 3 dimensions                   (SW Layer)
     2   'lstm'            LSTM                    LSTM with 200 hidden units                         (HW Layer)
     3   'fc'              Fully Connected         5 fully connected layer                            (HW Layer)
     4   'softmax'         Softmax                 softmax                                            (SW Layer)
     5   'classoutput'     Classification Output   crossentropyex with 'Dancing' and 4 other classes  (SW Layer)
                                                                                                    
### Notice: The layer 'sequenceinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: lstm.wi ...
### Compiling layer group: lstm.wi ... complete.
### Compiling layer group: lstm.wo ...
### Compiling layer group: lstm.wo ... complete.
### Compiling layer group: lstm.wg ...
### Compiling layer group: lstm.wg ... complete.
### Compiling layer group: lstm.wf ...
### Compiling layer group: lstm.wf ... complete.
### Compiling layer group: fc ...
### Compiling layer group: fc ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00c00000"     "20.0 MB"       
    "InstructionDataOffset"     "0x02000000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02400000"     "4.0 MB"        
    "EndOffset"                 "0x02800000"     "Total: 40.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy method of the
dlhdl.Workflow object. This function uses the output of the compile function to program the
FPGA board and download the network weights and biases. The deploy function starts programming
the FPGA device and displays progress messages, and the required time to deploy the network.

 deploy(hW)
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### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Resetting network state.
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 30-Jun-2022 13:41:44

Load Human Activity Test Data

Load the test data and classify the activity at each time step. Each sequence has three features and
varies in length. The three features correspond to the accelerometer readings in three different
directions.

Load the human activity test data. XTest contains a single sequence of dimension 3. YTest contains
a sequence of categorical labels that correspond to the activity at each time step.

load HumanActivityTest
numFeatures = 3;
figure
plot(XTest{1}')
xlabel("Time Step")
legend("Feature " + (1:numFeatures))
title("Test Data")

Run the Prediction

Classify the test data by using the classify function.

YPred = classify(hW.Network, XTest{1});
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Calculate the accuracy of the prediction.

acc = sum(YPred == YTest{1})./numel(YTest{1})

acc = 0.9995

Compare the predictions with the test data by using a plot.

figure
plot(YPred,'.-')
hold on
plot(YTest{1})
hold off

xlabel("Time Step")
ylabel("Activity")
title("Predicted Activities")
legend(["Predicted" "Test Data"])

Compare this graph to the output of the predict method.

Run the predict method of the dlhdl.Workflow object, to retrieve the hardware prediction
results.

predictions = hW.predict(XTest{1}(:,1:10000));
predictions = horzcat(predictions, hW.predict(XTest{1}(:,10001:20000)));
predictions = horzcat(predictions, hW.predict(XTest{1}(:,20001:30000)));
predictions = horzcat(predictions, hW.predict(XTest{1}(:,30001:40000)));
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predictions = horzcat(predictions, hW.predict(XTest{1}(:,40001:50000)));
predictions = horzcat(predictions, hW.predict(XTest{1}(:,50001:end)));
save("hardwarepredictions.mat","predictions")
indices = [];
actions = [];
for x = 1:length(YPred)
    [r,i] = max(predictions(:,x));
    indices = [indices i];
    switch i 
        case 1
            actions = [actions categorical("Dancing")];
        case 2 
            actions = [actions categorical("Running")];
        case 5
            actions = [actions categorical("Walking")];
        case 4
            actions = [actions categorical("Standing")];
        case 3
            actions = [actions categorical("Sitting")];
    end
end

Plot the comparison between the FPGA board predictions and test data.

figure
plot(actions,'.-')
hold on
plot(YTest{1})
hold off

xlabel("Time Step")
ylabel("Activity")
title("Predicted Activities")
legend(["Predicted" "Test Data"])
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The hardware-predicted activities are similar to the activities classified by the classify function.

See Also
dlhdl.Workflow | dlhdl.Target | compile | deploy | predict | predictAndUpdateState |
resetState

More About
• “Support for Long Short-Term Memory Networks” on page 13-2
• “How Deep Learning HDL Toolbox Compiles the LSTM Layer” on page 13-5
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Generate Word-By-Word Text on FPGAs by Using Deep
Learning HDL Toolbox

This example shows how to deploy a long short-term memory (LSTM) network to generate text word-
by-word on an FPGA by using the Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA
and SoC. Use MATLAB® to retrieve the prediction results from the target device.

This example reads text from the Project Gutenberg website, parses the HTML code to extract the
relevant text, then uses a custom mini-batch datastore, documentGenerationDatastore to input
the documents to the network as mini-batches of sequence data. The datastore converts documents to
sequences of numeric word indices. The deep learning network is an LSTM network that contains a
word embedding layer.

To train a deep learning network for word-by-word text generation, train a sequence-to-sequence
LSTM network to predict the next word in a sequence of words. To train the network to predict the
next word, specify the responses as the input sequences shifted by one time step. This example uses
the pretrained network from the “Word-By-Word Text Generation Using Deep Learning” example.

Prerequisites

• Xilinx® Zynq® Ultrascale+™ ZCU102 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Text Analytics Toolbox™

Load Training Data

Load the training data. Read the HTML code from Alice's Adventures in Wonderland by Lewis Carroll
from Project Gutenberg.

url = "https://www.gutenberg.org/files/11/11-h/11-h.htm";
code = webread(url);

Parse HTML Code

The HTML code contains the relevant text inside paragraph elements. Extract the relevant text by
parsing the HTML code using htmlTree and then finding the elements with element name "p".

tree = htmlTree(code);
selector = "p";
subtrees = findElement(tree,selector);

Extract the text data from the HTML subtrees by using extractHTMLText and view the first 10
paragraphs.

textData = extractHTMLText(subtrees);
textData(1:10)

ans = 10×1 string
    "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, “and what is the use of a book,” thought Alice “without pictures or conversations?”"
    "So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her."
    "There was nothing so very remarkable in that; nor did Alice think it so very much out of the way to hear the Rabbit say to itself, “Oh dear! Oh dear! I shall be late!” (when she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the time it all seemed quite natural); but when the Rabbit actually took a watch out of its waistcoat-pocket, and looked at it, and then hurried on, Alice started to her feet, for it flashed across her mind that she had never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, and burning with curiosity, she ran across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge."
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    "In another moment down went Alice after it, never once considering how in the world she was to get out again."
    "The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not a moment to think about stopping herself before she found herself falling down a very deep well."
    "Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down to look about her and to wonder what was going to happen next. First, she tried to look down and make out what she was coming to, but it was too dark to see anything; then she looked at the sides of the well, and noticed that they were filled with cupboards and book-shelves; here and there she saw maps and pictures hung upon pegs. She took down a jar from one of the shelves as she passed; it was labelled “ORANGE MARMALADE”, but to her great disappointment it was empty: she did not like to drop the jar for fear of killing somebody underneath, so managed to put it into one of the cupboards as she fell past it."
    "“Well!” thought Alice to herself, “after such a fall as this, I shall think nothing of tumbling down stairs! How brave they’ll all think me at home! Why, I wouldn’t say anything about it, even if I fell off the top of the house!” (Which was very likely true.)"
    "Down, down, down. Would the fall never come to an end? “I wonder how many miles I’ve fallen by this time?” she said aloud. “I must be getting somewhere near the centre of the earth. Let me see: that would be four thousand miles down, I think-” (for, you see, Alice had learnt several things of this sort in her lessons in the schoolroom, and though this was not a very good opportunity for showing off her knowledge, as there was no one to listen to her, still it was good practice to say it over) “-yes, that’s about the right distance-but then I wonder what Latitude or Longitude I’ve got to?” (Alice had no idea what Latitude was, or Longitude either, but thought they were nice grand words to say.)"
    "Presently she began again. “I wonder if I shall fall right through the earth! How funny it’ll seem to come out among the people that walk with their heads downward! The Antipathies, I think-” (she was rather glad there was no one listening, this time, as it didn’t sound at all the right word) “-but I shall have to ask them what the name of the country is, you know. Please, Ma’am, is this New Zealand or Australia?” (and she tried to curtsey as she spoke-fancy curtseying as you’re falling through the air! Do you think you could manage it?) “And what an ignorant little girl she’ll think me for asking! No, it’ll never do to ask: perhaps I shall see it written up somewhere.”"
    "Down, down, down. There was nothing else to do, so Alice soon began talking again. “Dinah’ll miss me very much to-night, I should think!” (Dinah was the cat.) “I hope they’ll remember her saucer of milk at tea-time. Dinah my dear! I wish you were down here with me! There are no mice in the air, I’m afraid, but you might catch a bat, and that’s very like a mouse, you know. But do cats eat bats, I wonder?” And here Alice began to get rather sleepy, and went on saying to herself, in a dreamy sort of way, “Do cats eat bats? Do cats eat bats?” and sometimes, “Do bats eat cats?” for, you see, as she couldn’t answer either question, it didn’t much matter which way she put it. She felt that she was dozing off, and had just begun to dream that she was walking hand in hand with Dinah, and saying to her very earnestly, “Now, Dinah, tell me the truth: did you ever eat a bat?” when suddenly, thump! thump! down she came upon a heap of sticks and dry leaves, and the fall was over."

Remove the empty paragraphs and view the first 10 remaining paragraphs.

textData(textData == "") = [];
textData(1:10)

ans = 10×1 string
    "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, “and what is the use of a book,” thought Alice “without pictures or conversations?”"
    "So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her."
    "There was nothing so very remarkable in that; nor did Alice think it so very much out of the way to hear the Rabbit say to itself, “Oh dear! Oh dear! I shall be late!” (when she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the time it all seemed quite natural); but when the Rabbit actually took a watch out of its waistcoat-pocket, and looked at it, and then hurried on, Alice started to her feet, for it flashed across her mind that she had never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, and burning with curiosity, she ran across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge."
    "In another moment down went Alice after it, never once considering how in the world she was to get out again."
    "The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not a moment to think about stopping herself before she found herself falling down a very deep well."
    "Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down to look about her and to wonder what was going to happen next. First, she tried to look down and make out what she was coming to, but it was too dark to see anything; then she looked at the sides of the well, and noticed that they were filled with cupboards and book-shelves; here and there she saw maps and pictures hung upon pegs. She took down a jar from one of the shelves as she passed; it was labelled “ORANGE MARMALADE”, but to her great disappointment it was empty: she did not like to drop the jar for fear of killing somebody underneath, so managed to put it into one of the cupboards as she fell past it."
    "“Well!” thought Alice to herself, “after such a fall as this, I shall think nothing of tumbling down stairs! How brave they’ll all think me at home! Why, I wouldn’t say anything about it, even if I fell off the top of the house!” (Which was very likely true.)"
    "Down, down, down. Would the fall never come to an end? “I wonder how many miles I’ve fallen by this time?” she said aloud. “I must be getting somewhere near the centre of the earth. Let me see: that would be four thousand miles down, I think-” (for, you see, Alice had learnt several things of this sort in her lessons in the schoolroom, and though this was not a very good opportunity for showing off her knowledge, as there was no one to listen to her, still it was good practice to say it over) “-yes, that’s about the right distance-but then I wonder what Latitude or Longitude I’ve got to?” (Alice had no idea what Latitude was, or Longitude either, but thought they were nice grand words to say.)"
    "Presently she began again. “I wonder if I shall fall right through the earth! How funny it’ll seem to come out among the people that walk with their heads downward! The Antipathies, I think-” (she was rather glad there was no one listening, this time, as it didn’t sound at all the right word) “-but I shall have to ask them what the name of the country is, you know. Please, Ma’am, is this New Zealand or Australia?” (and she tried to curtsey as she spoke-fancy curtseying as you’re falling through the air! Do you think you could manage it?) “And what an ignorant little girl she’ll think me for asking! No, it’ll never do to ask: perhaps I shall see it written up somewhere.”"
    "Down, down, down. There was nothing else to do, so Alice soon began talking again. “Dinah’ll miss me very much to-night, I should think!” (Dinah was the cat.) “I hope they’ll remember her saucer of milk at tea-time. Dinah my dear! I wish you were down here with me! There are no mice in the air, I’m afraid, but you might catch a bat, and that’s very like a mouse, you know. But do cats eat bats, I wonder?” And here Alice began to get rather sleepy, and went on saying to herself, in a dreamy sort of way, “Do cats eat bats? Do cats eat bats?” and sometimes, “Do bats eat cats?” for, you see, as she couldn’t answer either question, it didn’t much matter which way she put it. She felt that she was dozing off, and had just begun to dream that she was walking hand in hand with Dinah, and saying to her very earnestly, “Now, Dinah, tell me the truth: did you ever eat a bat?” when suddenly, thump! thump! down she came upon a heap of sticks and dry leaves, and the fall was over."

Visualize the text data in a word cloud.

figure
wordcloud(textData);
title("Alice's Adventures in Wonderland")

 Generate Word-By-Word Text on FPGAs by Using Deep Learning HDL Toolbox

10-261



Prepare Data for Training

Create a datastore that contains the data for training by using the documentGenerationDatastore
function. For the predictors, the function converts the documents into sequences of word indices by
using a word encoding. The first word index for each document corresponds to a "start of text" token.
The "start of text" token is given by the string "startOfText". For the responses, the datastore
returns categorical sequences of the words shifted by one.

Tokenize the text data by using the tokenizedDocument function..

documents = tokenizedDocument(textData);

Create a document generation datastore using the tokenized documents.

ds = documentGenerationDatastore(documents);

To reduce the amount of padding added to the sequences, sort the documents in the datastore by
sequence length.

ds = sort(ds);

Load the Pretrained Network

To load the LSTM network, enter:

load WordByWordNetwork
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View the layers of the network by using the analyzeNetwork function. The function returns a
graphical representation of the network and detailed parameter settings of the layers in the network.

analyzeNetwork(net)

Define FPGA Board Interface

Define the target FPGA board programming interface by using the dlhdl.Target object. Specify
that the interface is for a Xilinx board with an Ethernet interface.

To create the target object, enter:

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado tool
path, enter:

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');
hTarget = dlhdl.Target('Xilinx','Interface','JTAG');

Prepare Network for Deployment

Prepare the network for deployment by creating a dlhdl.Workflow object. Specify the network and
the bitstream name. Ensure that the bitstream name matches the data type and the FPGA board. In
this example, the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single
data type.

hW = dlhdl.Workflow('network', net, 'Bitstream', 'zcu102_lstm_single','Target',hTarget);

Tu run the example on the Xilinx ZC706 board, enter:

hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_lstm_single','Target',hTarget);
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Compile the LSTM Network

Run the compile method of the dlhdl.Workflow object to compile the network and generate the
instructions, weights, and biases for deployment.

dn = compile(hW)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_lstm_single.
### The network includes the following layers:
     1   'sequenceinput'    Sequence Input          Sequence input with 1 dimensions                                (SW Layer)
     2   'word-embedding'   Word Embedding Layer    Word embedding layer with 100 dimensions and 2920 unique words  (HW Layer)
     3   'lstm'             LSTM                    LSTM with 100 hidden units                                      (HW Layer)
     4   'fc'               Fully Connected         2921 fully connected layer                                      (HW Layer)
     5   'softmax'          Softmax                 softmax                                                         (SW Layer)
     6   'classoutput'      Classification Output   crossentropyex with 'startOfText' and 2920 other classes        (SW Layer)
                                                                                                                  
### Notice: The layer 'sequenceinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'word-embedding' with type 'dnnfpga.layer.wordEmbeddingLayerDLP' is implemented in software.
### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: lstm.wi ...
### Compiling layer group: lstm.wi ... complete.
### Compiling layer group: lstm.wo ...
### Compiling layer group: lstm.wo ... complete.
### Compiling layer group: lstm.wg ...
### Compiling layer group: lstm.wg ... complete.
### Compiling layer group: lstm.wf ...
### Compiling layer group: lstm.wf ... complete.
### Compiling layer group: fc ...
### Compiling layer group: fc ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00c00000"     "20.0 MB"       
    "InstructionDataOffset"     "0x02000000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02400000"     "4.0 MB"        
    "EndOffset"                 "0x02800000"     "Total: 40.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the
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FPGA board by using the programming file and downloads the network weights and biases. The
deploy function starts programming the FPGA device and displays progress messages, and the time
it takes to deploy the network.

deploy(hW)

Generate New Text Using Hardware

Generate the first word of the text by sampling a word from a probability distribution according to
first words of the text in the training data. Generate the remaining words by using the deployed
LSTM network to predict the next time step using the current sequence of generated text. Keep
generating words one-by-one until the network predicts the "end of text" word.

To make the first prediction using the network, input the index that represents the "start of text"
token. Find the index by using the word2ind function with the word encoding used by the document
datastore.

 enc = ds.Encoding;
 wordIndex = word2ind(enc,"startOfText");

For the remaining predictions, sample the next word according to the prediction scores of the
network. The prediction scores represent the probability distribution of the next word. Sample the
words from the vocabulary given by the class names of the output layer of the network.

vocabulary = string(net.Layers(end).Classes);

Make predictions word by word using the predictAndUpdateState function. For each prediction,
input the index of the previous word. Stop predicting when the network predicts the end of text word
or when the generated text is 200 characters long. To generate multiple pieces of text, reset the
network state between generations by using the resetState function.

 generatedText = "";
 maxLength = 200;
 resetState(hW);
 while strlength(generatedText) < maxLength
     [wordScores,~] = predictAndUpdateState(hW,wordIndex);
     newWord = datasample(vocabulary,1,'Weights',wordScores);

     if newWord == "EndOfText"
         break
     end

     generatedText = generatedText + " " + newWord;
     wordIndex = word2ind(enc,newWord);
 end

The generation process introduces whitespace characters between each prediction, which means that
some punctuation characters appear with unnecessary spaces before and after. Reconstruct the
generated text by removing the spaces before and after the appropriate punctuation characters.

Remove the spaces that appear before the specified punctuation characters.

 punctuationCharacters = ["." "," "’" ")" ":" "?" "!"];
 generatedText = replace(generatedText," " + punctuationCharacters,punctuationCharacters);

Remove the spaces that appear after the specified punctuation characters.
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 punctuationCharacters = ["(" "‘"];
 generatedText = replace(generatedText,punctuationCharacters + " ",punctuationCharacters)

generatedText = 
" The Mock Turtle sighed deeply, and began watching running from him. “ Off with her head! ” Those whom she sentenced were taken into custody by the soldiers, who was ye ; not after waiting to ask."

See Also
dlhdl.Workflow | dlhdl.Target | compile | deploy | predict | predictAndUpdateState |
resetState

More About
• “Support for Long Short-Term Memory Networks” on page 13-2
• “How Deep Learning HDL Toolbox Compiles the LSTM Layer” on page 13-5
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Run Sequence Forecasting on FPGA by Using Deep Learning
HDL Toolbox™

This example shows how to create, compile, and deploy a long short-term memory (LSTM) network
trained on waveform data by using the Deep Learning HDL Toolbox™ Support Package for Xilinx
FPGA and SoC. Use the deployed network to predict future values by using open-loop and closed-loop
forecasting. Use MATLAB® to retrieve the prediction results from the target device.

Waveform Data Network

The network attached to this example was trained using the “Time Series Forecasting Using Deep
Learning”. This example uses the WaveformData.mat data set, which contains 2000 synthetically
generated waveforms of varying lengths with three channels. This example uses a trained LSTM
network to forecast future values of the waveforms given the values from the previous time steps
using both closed loop and open loop forecasting.

Prerequisites

• Xilinx® Zynq® Ultrascale+™ ZCU102 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained Network

To load the LSTM network enter:

load WaveformForcastingNet

Use the analyzeNetwork function to obtain information about the network layers. the function
returns a graphical representation of the network that contains detailed parameter information for
every layer in the network.

analyzeNetwork(net)
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Define FPGA Board Interface

Define the target FPGA board programming interface by using the dlhdl.Target object. Specify
that the interface is for a Xilinx board with an Ethernet interface.

To create the target object, enter:

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado
toolpath, enter:

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');
hTarget = dlhdl.Target('Xilinx','Interface','JTAG');

Prepare Network for Deployment

Prepare the network for deployment by creating a dlhdl.Workflow object. Specify the network and
the bitstream name. Ensure that the bitstream name matches the data type and the FPGA board. In
this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single
data type.

hW = dlhdl.Workflow('network', net, 'Bitstream', 'zcu102_lstm_single','Target',hTarget);

Tu run the example on the Xilinx ZC706 board, enter:

hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_lstm_single','Target',hTarget);
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Compile the LSTM Network

Run the compile method of the dlhdl.Workflow object to compile the network and generate the
instructions, weights, and biases for deployment. The total number of frames exceeds the default
value of 30. Set the InputFrameNumberLimit name-value argument to 1000 to run predictions in
chunks of 1000 frames to prevent timeouts.

dn = compile(hW,'InputFrameNumberLimit',1000)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_lstm_single.
### The network includes the following layers:
     1   'sequenceinput'      Sequence Input      Sequence input with 3 dimensions             (SW Layer)
     2   'lstm'               LSTM                LSTM with 128 hidden units                   (HW Layer)
     3   'fc'                 Fully Connected     3 fully connected layer                      (HW Layer)
     4   'regressionoutput'   Regression Output   mean-squared-error with response 'Response'  (SW Layer)
                                                                                             
### Notice: The layer 'sequenceinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'regressionoutput' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
### Compiling layer group: lstm.wi ...
### Compiling layer group: lstm.wi ... complete.
### Compiling layer group: lstm.wo ...
### Compiling layer group: lstm.wo ... complete.
### Compiling layer group: lstm.wg ...
### Compiling layer group: lstm.wg ... complete.
### Compiling layer group: lstm.wf ...
### Compiling layer group: lstm.wf ... complete.
### Compiling layer group: fc ...
### Compiling layer group: fc ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00c00000"     "20.0 MB"       
    "InstructionDataOffset"     "0x02000000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02400000"     "4.0 MB"        
    "EndOffset"                 "0x02800000"     "Total: 40.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the
FPGA board by using the programming file. It also downloads the network weights and biases. The
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deploy function starts programming the FPGA device and displays progress messages, and the
required time to deploy the network.

 deploy(hW)

Test Network

Prepare the test data for prediction. Normalize the test data using the statistics calculated from the
training data. To forecast the values of future time steps of a sequence, specify the targets as the test
sequences with values shifted by one time step. In other words, at each time step of the input
sequence, the LSTM network learns to predict the value of the next time step. The predictors as the
test sequences without the final time step.

load Waveformdata
numChannels = size(data{1},1);
numObservations = numel(data);

idxTrain = 1:floor(0.9*numObservations);
idxTest = floor(0.9*numObservations)+1:numObservations;
dataTrain = data(idxTrain);
dataTest = data(idxTest);

for n = 1:numel(dataTrain)
    X = dataTrain{n};
    XTrain{n} = X(:,1:end-1);
    TTrain{n} = X(:,2:end);
end

muX = mean(cat(2,XTrain{:}),2);
sigmaX = std(cat(2,XTrain{:}),0,2);
muT = mean(cat(2,TTrain{:}),2);
sigmaT = std(cat(2,TTrain{:}),0,2);

for n = 1:size(dataTest,1)
    X = dataTest{n};
    XTest{n} = (X(:,1:end-1) - muX) ./ sigmaX;
    TTest{n} = (X(:,2:end) - muT) ./ sigmaT;
end

Make predictions using the test data.

YTest = hW.predict(XTest{1});

### Resetting network state.
### Finished writing input activations.
### Running a sequence of length 115.

To evaluate the accuracy, calculate the root mean squared error (RMSE) between the predictions and
the target for each test sequence.

for i = 1:size(YTest,1)
    rmse(i) = sqrt(mean((YTest(i) - TTest{1}(i)).^2,"all"));
end

Visualize the errors in a histogram. Lower values indicate greater accuracy.

figure
histogram(rmse)
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xlabel("RMSE")
ylabel("Frequency")

Calculate the mean RMSE over all test observations.

mean(rmse)

ans = single
    0.8385

Forecast Future Time Steps

To forecast the values of multiple future time steps, when given an input time series or sequence, use
the predictAndUpdateState function. This function predicts time steps one at a time and updates
the network state at each prediction. For each prediction, use the previous prediction as the input to
the function.

Visualize one of the test sequences in a plot.

idx = 2;
X = XTest{idx};
T = TTest{idx};

figure
stackedplot(X',DisplayLabels="Channel " + (1:numChannels))
xlabel("Time Step")
title("Test Observation " + idx)
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Open-Loop Forecasting

Open-loop forecasting predicts the next time step in a sequence using only the input data. When
making predictions for subsequent time steps, you collect the true values form your data source and
use those as input. For example, suppose that you want to predict the value for time step t of a
sequence by using data collected in time steps 1 through t − 1. To make predictions for time step
t + 1, wait until you record the true value for time step t and use that value as input to make the next
prediction. Use open-loop forecasting when you have true values to provide to the network before
making the next prediction.

Initialize the network state by resetting the state using the resetState function, then make an
initial prediction using the first few time steps of the input data. Update the network state by using
the first 75 time steps of the input data.

resetState(hW)
offset = 75;
[~,~] = hW.predictAndUpdateState(X(:,1:offset)); 

### Resetting network state.
### Finished writing input activations.
### Running a sequence of length 75.

To forecast further predictions, loop over time steps and update the network state by using the
predictAndUpdateState function. Forecast values for the remaining time steps of the test
observation by looping over the time steps of the input data and using them as input to the network.
The first prediction is the value that corresponds to the time step offset + 1.
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numTimeSteps = size(X,2);
numPredictionTimeSteps = numTimeSteps - offset;
Y = zeros(numChannels,numPredictionTimeSteps);

for t = 1:numPredictionTimeSteps
    Xt = X(:,offset+t);
    Y(:,t) = predictAndUpdateState(hW,Xt);
end

Compare the predictions with the target values.

figure
t = tiledlayout(numChannels,1);
title(t,"Open Loop Forecasting")

for i = 1:numChannels
    nexttile
    plot(T(i,:))
    hold on
    plot(offset:numTimeSteps,[T(i,offset) Y(i,:)],'--')
    ylabel("Channel " + i)
end

xlabel("Time Step")
nexttile(1)
legend(["Input" "Forecasted"])
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Closed-Loop Forecasting

Closed-loop forecasting predicts subsequent time steps in a sequence by using the previous
predictions as input. In this case, the model does not require the true values to make the prediction.
For example, suppose that you want to predict the value for time steps t through t + k of the
sequence by using data collected in time steps 1 through t − 1. To make predictions for time step i,
use the predicted value for time step i− 1 as input. Use closed-loop forecasting to forecast multiple
subsequent time steps or when you do not have true values to provide to the network before making
the next prediction.

Initialize the network state by resetting the state using the resetState function, then make an
initial prediction, Z, using the first few time steps of the input data. Update the network state by
using the first 75 time steps of the input data.

resetState(hW)
offset = size(X,2);
[Z, ~] = predictAndUpdateState(hW,X);

### Resetting network state.
### Finished writing input activations.
### Running a sequence of length 191.

To forecast further predictions, loop over time steps and update the network state by using the
predictAndUpdateState function. Forecast the next 200 time steps by iteratively passing the
previously predicted value to the network. Because the network does not require the input data to
make any further predictions, you can specify any number of time steps to forecast.

numPredictionTimeSteps = 200;
Xt = Z(:,end);
Y = zeros(numChannels,numPredictionTimeSteps);

for t = 1:numPredictionTimeSteps    
    [Y(:,t),~] =  predictAndUpdateState(hW,Xt);
    Xt = Y(:,t);   
end

Visualize the forecasted values in a plot.

numTimeSteps = offset + numPredictionTimeSteps;

figure
t = tiledlayout(numChannels,1);
title(t,"Closed Loop Forecasting")

for i = 1:numChannels
    nexttile
    plot(T(i,1:offset))
    hold on
    plot(offset:numTimeSteps,[T(i,offset) Y(i,:)],'--')
    ylabel("Channel " + i)
end

xlabel("Time Step")
nexttile(1)
legend(["Input" "Forecasted"])
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Closed-loop forecasting allows you to forecast an arbitrary number of time steps, but can be less
accurate when compared to open-loop forecasting because the network does not have access to the
true values during the forecasting process.

See Also
dlhdl.Workflow | dlhdl.Target | compile | deploy | predict | predictAndUpdateState |
resetState

More About
• “Support for Long Short-Term Memory Networks” on page 13-2
• “How Deep Learning HDL Toolbox Compiles the LSTM Layer” on page 13-5
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Detect Objects Using YOLO v3 Network Deployed to FPGA

This example shows how to deploy a trained you only look once (YOLO) v3 object detector to a target
FPGA board. You then use MATLAB to retrieve the object classification from the FPGA board.

Compared to YOLO v2 networks, YOLO v3 networks have additional detection heads that help detect
smaller objects.

Create YOLO v3 Detector Object

In this example, you use a pretrained YOLO v3 object detector. To construct and train a custom YOLO
v3 detector, see “Object Detection Using YOLO v3 Deep Learning” (Computer Vision Toolbox).

Use the downloadPretrainedYOLOv3Detector function to generate a dlnetwork object. To get
the code for this function, see the downloadPretrainedYOLOv3Detector Function on page 10-281
section.

preTrainedDetector = downloadPretrainedYOLOv3Detector;

Downloaded pretrained detector

The generated network uses training data to estimate the anchor boxes, which help the detector
learn to predict the boxes. For more information about anchor boxes, see “Anchor Boxes for Object
Detection” (Computer Vision Toolbox). The downloadPretrainedYOLOv3Detector function
creates this YOLO v3 network:

Load the Pretrained network

Extract the network from the pretrained YOLO v3 detector object.

yolov3Detector = preTrainedDetector;
net = yolov3Detector.Network;

Extract the attributes of the network as variables.

anchorBoxes = yolov3Detector.AnchorBoxes;
outputNames = yolov3Detector.Network.OutputNames;
inputSize = yolov3Detector.InputSize;
classNames = yolov3Detector.ClassNames;
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Use the analyzeNetwork function to obtain information about the network layers. the function
returns a graphical representation of the network that contains detailed parameter information for
every layer in the network.

analyzeNetwork(net);

Define FPGA Board Interface

Define the target FPGA board programming interface by using the dlhdl.Target object. Create a
programming interface with custom name for your target device and an Ethernet interface to connect
the target device to the host computer.

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Prepare Network for Deployment

Prepare the network for deployment by creating a dlhdl.Workflow object. Specify the network and
bitstream name. Ensure that the bitstream name matches the data type and the FPGA board that you
are targeting. In this example, the target FPGA board is the Xilinx® Zynq® UltraScale+™ MPSoC
ZCU102 board and the bitstream uses the single data type.

hW = dlhdl.Workflow('Network',net,'Bitstream','zcu102_single','Target',hTarget);

Compile Network

Run the compile method of the dlhdl.Workflow object to compile the network and generate the
instructions, weights, and biases for deployment.

dn = compile(hW);

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### The network includes the following layers:
     1   'data'                    Image Input           227×227×3 images                                                     (SW Layer)
     2   'conv1'                   2-D Convolution       64 3×3×3 convolutions with stride [2  2] and padding [0  0  0  0]    (HW Layer)
     3   'relu_conv1'              ReLU                  ReLU                                                                 (HW Layer)
     4   'pool1'                   2-D Max Pooling       3×3 max pooling with stride [2  2] and padding [0  0  0  0]          (HW Layer)
     5   'fire2-squeeze1x1'        2-D Convolution       16 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
     6   'fire2-relu_squeeze1x1'   ReLU                  ReLU                                                                 (HW Layer)
     7   'fire2-expand1x1'         2-D Convolution       64 1×1×16 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
     8   'fire2-relu_expand1x1'    ReLU                  ReLU                                                                 (HW Layer)
     9   'fire2-expand3x3'         2-D Convolution       64 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
    10   'fire2-relu_expand3x3'    ReLU                  ReLU                                                                 (HW Layer)
    11   'fire2-concat'            Depth concatenation   Depth concatenation of 2 inputs                                      (HW Layer)
    12   'fire3-squeeze1x1'        2-D Convolution       16 1×1×128 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    13   'fire3-relu_squeeze1x1'   ReLU                  ReLU                                                                 (HW Layer)
    14   'fire3-expand1x1'         2-D Convolution       64 1×1×16 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    15   'fire3-relu_expand1x1'    ReLU                  ReLU                                                                 (HW Layer)
    16   'fire3-expand3x3'         2-D Convolution       64 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
    17   'fire3-relu_expand3x3'    ReLU                  ReLU                                                                 (HW Layer)
    18   'fire3-concat'            Depth concatenation   Depth concatenation of 2 inputs                                      (HW Layer)
    19   'pool3'                   2-D Max Pooling       3×3 max pooling with stride [2  2] and padding [0  1  0  1]          (HW Layer)
    20   'fire4-squeeze1x1'        2-D Convolution       32 1×1×128 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    21   'fire4-relu_squeeze1x1'   ReLU                  ReLU                                                                 (HW Layer)
    22   'fire4-expand1x1'         2-D Convolution       128 1×1×32 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    23   'fire4-relu_expand1x1'    ReLU                  ReLU                                                                 (HW Layer)
    24   'fire4-expand3x3'         2-D Convolution       128 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    25   'fire4-relu_expand3x3'    ReLU                  ReLU                                                                 (HW Layer)
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    26   'fire4-concat'            Depth concatenation   Depth concatenation of 2 inputs                                      (HW Layer)
    27   'fire5-squeeze1x1'        2-D Convolution       32 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    28   'fire5-relu_squeeze1x1'   ReLU                  ReLU                                                                 (HW Layer)
    29   'fire5-expand1x1'         2-D Convolution       128 1×1×32 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    30   'fire5-relu_expand1x1'    ReLU                  ReLU                                                                 (HW Layer)
    31   'fire5-expand3x3'         2-D Convolution       128 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    32   'fire5-relu_expand3x3'    ReLU                  ReLU                                                                 (HW Layer)
    33   'fire5-concat'            Depth concatenation   Depth concatenation of 2 inputs                                      (HW Layer)
    34   'pool5'                   2-D Max Pooling       3×3 max pooling with stride [2  2] and padding [0  1  0  1]          (HW Layer)
    35   'fire6-squeeze1x1'        2-D Convolution       48 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    36   'fire6-relu_squeeze1x1'   ReLU                  ReLU                                                                 (HW Layer)
    37   'fire6-expand1x1'         2-D Convolution       192 1×1×48 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    38   'fire6-relu_expand1x1'    ReLU                  ReLU                                                                 (HW Layer)
    39   'fire6-expand3x3'         2-D Convolution       192 3×3×48 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'fire6-relu_expand3x3'    ReLU                  ReLU                                                                 (HW Layer)
    41   'fire6-concat'            Depth concatenation   Depth concatenation of 2 inputs                                      (HW Layer)
    42   'fire7-squeeze1x1'        2-D Convolution       48 1×1×384 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    43   'fire7-relu_squeeze1x1'   ReLU                  ReLU                                                                 (HW Layer)
    44   'fire7-expand1x1'         2-D Convolution       192 1×1×48 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    45   'fire7-relu_expand1x1'    ReLU                  ReLU                                                                 (HW Layer)
    46   'fire7-expand3x3'         2-D Convolution       192 3×3×48 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    47   'fire7-relu_expand3x3'    ReLU                  ReLU                                                                 (HW Layer)
    48   'fire7-concat'            Depth concatenation   Depth concatenation of 2 inputs                                      (HW Layer)
    49   'fire8-squeeze1x1'        2-D Convolution       64 1×1×384 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    50   'fire8-relu_squeeze1x1'   ReLU                  ReLU                                                                 (HW Layer)
    51   'fire8-expand1x1'         2-D Convolution       256 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    52   'fire8-relu_expand1x1'    ReLU                  ReLU                                                                 (HW Layer)
    53   'fire8-expand3x3'         2-D Convolution       256 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    54   'fire8-relu_expand3x3'    ReLU                  ReLU                                                                 (HW Layer)
    55   'fire8-concat'            Depth concatenation   Depth concatenation of 2 inputs                                      (HW Layer)
    56   'fire9-squeeze1x1'        2-D Convolution       64 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    57   'fire9-relu_squeeze1x1'   ReLU                  ReLU                                                                 (HW Layer)
    58   'fire9-expand1x1'         2-D Convolution       256 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    59   'fire9-relu_expand1x1'    ReLU                  ReLU                                                                 (HW Layer)
    60   'fire9-expand3x3'         2-D Convolution       256 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    61   'fire9-relu_expand3x3'    ReLU                  ReLU                                                                 (HW Layer)
    62   'fire9-concat'            Depth concatenation   Depth concatenation of 2 inputs                                      (HW Layer)
    63   'customConv1'             2-D Convolution       1024 3×3×512 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    64   'customBatchNorm1'        Batch Normalization   Batch normalization with 1024 channels                               (HW Layer)
    65   'customRelu1'             ReLU                  ReLU                                                                 (HW Layer)
    66   'customOutputConv1'       2-D Convolution       18 1×1×1024 convolutions with stride [1  1] and padding 'same'       (HW Layer)
    67   'featureConv2'            2-D Convolution       128 1×1×512 convolutions with stride [1  1] and padding 'same'       (HW Layer)
    68   'featureBatchNorm2'       Batch Normalization   Batch normalization with 128 channels                                (HW Layer)
    69   'featureRelu2'            ReLU                  ReLU                                                                 (HW Layer)
    70   'featureResize2'          Resize                nnet.cnn.layer.Resize2DLayer                                         (HW Layer)
    71   'depthConcat2'            Depth concatenation   Depth concatenation of 2 inputs                                      (HW Layer)
    72   'customConv2'             2-D Convolution       256 3×3×384 convolutions with stride [1  1] and padding 'same'       (HW Layer)
    73   'customBatchNorm2'        Batch Normalization   Batch normalization with 256 channels                                (HW Layer)
    74   'customRelu2'             ReLU                  ReLU                                                                 (HW Layer)
    75   'customOutputConv2'       2-D Convolution       18 1×1×256 convolutions with stride [1  1] and padding 'same'        (HW Layer)
                                                                                                                            
### An output layer called 'Output1_customOutputConv1' of type 'nnet.cnn.layer.RegressionOutputLayer' has been added to the provided network. This layer performs no operation during prediction and thus does not affect the output of the network.
### An output layer called 'Output2_customOutputConv2' of type 'nnet.cnn.layer.RegressionOutputLayer' has been added to the provided network. This layer performs no operation during prediction and thus does not affect the output of the network.
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Notice: The layer 'data' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'Output1_customOutputConv1' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
### Notice: The layer 'Output2_customOutputConv2' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
### Compiling layer group: conv1>>fire2-relu_squeeze1x1 ...
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### Compiling layer group: conv1>>fire2-relu_squeeze1x1 ... complete.
### Compiling layer group: fire2-expand1x1>>fire2-relu_expand1x1 ...
### Compiling layer group: fire2-expand1x1>>fire2-relu_expand1x1 ... complete.
### Compiling layer group: fire2-expand3x3>>fire2-relu_expand3x3 ...
### Compiling layer group: fire2-expand3x3>>fire2-relu_expand3x3 ... complete.
### Compiling layer group: fire3-squeeze1x1>>fire3-relu_squeeze1x1 ...
### Compiling layer group: fire3-squeeze1x1>>fire3-relu_squeeze1x1 ... complete.
### Compiling layer group: fire3-expand1x1>>fire3-relu_expand1x1 ...
### Compiling layer group: fire3-expand1x1>>fire3-relu_expand1x1 ... complete.
### Compiling layer group: fire3-expand3x3>>fire3-relu_expand3x3 ...
### Compiling layer group: fire3-expand3x3>>fire3-relu_expand3x3 ... complete.
### Compiling layer group: pool3>>fire4-relu_squeeze1x1 ...
### Compiling layer group: pool3>>fire4-relu_squeeze1x1 ... complete.
### Compiling layer group: fire4-expand1x1>>fire4-relu_expand1x1 ...
### Compiling layer group: fire4-expand1x1>>fire4-relu_expand1x1 ... complete.
### Compiling layer group: fire4-expand3x3>>fire4-relu_expand3x3 ...
### Compiling layer group: fire4-expand3x3>>fire4-relu_expand3x3 ... complete.
### Compiling layer group: fire5-squeeze1x1>>fire5-relu_squeeze1x1 ...
### Compiling layer group: fire5-squeeze1x1>>fire5-relu_squeeze1x1 ... complete.
### Compiling layer group: fire5-expand1x1>>fire5-relu_expand1x1 ...
### Compiling layer group: fire5-expand1x1>>fire5-relu_expand1x1 ... complete.
### Compiling layer group: fire5-expand3x3>>fire5-relu_expand3x3 ...
### Compiling layer group: fire5-expand3x3>>fire5-relu_expand3x3 ... complete.
### Compiling layer group: pool5>>fire6-relu_squeeze1x1 ...
### Compiling layer group: pool5>>fire6-relu_squeeze1x1 ... complete.
### Compiling layer group: fire6-expand1x1>>fire6-relu_expand1x1 ...
### Compiling layer group: fire6-expand1x1>>fire6-relu_expand1x1 ... complete.
### Compiling layer group: fire6-expand3x3>>fire6-relu_expand3x3 ...
### Compiling layer group: fire6-expand3x3>>fire6-relu_expand3x3 ... complete.
### Compiling layer group: fire7-squeeze1x1>>fire7-relu_squeeze1x1 ...
### Compiling layer group: fire7-squeeze1x1>>fire7-relu_squeeze1x1 ... complete.
### Compiling layer group: fire7-expand1x1>>fire7-relu_expand1x1 ...
### Compiling layer group: fire7-expand1x1>>fire7-relu_expand1x1 ... complete.
### Compiling layer group: fire7-expand3x3>>fire7-relu_expand3x3 ...
### Compiling layer group: fire7-expand3x3>>fire7-relu_expand3x3 ... complete.
### Compiling layer group: fire8-squeeze1x1>>fire8-relu_squeeze1x1 ...
### Compiling layer group: fire8-squeeze1x1>>fire8-relu_squeeze1x1 ... complete.
### Compiling layer group: fire8-expand1x1>>fire8-relu_expand1x1 ...
### Compiling layer group: fire8-expand1x1>>fire8-relu_expand1x1 ... complete.
### Compiling layer group: fire8-expand3x3>>fire8-relu_expand3x3 ...
### Compiling layer group: fire8-expand3x3>>fire8-relu_expand3x3 ... complete.
### Compiling layer group: fire9-squeeze1x1>>fire9-relu_squeeze1x1 ...
### Compiling layer group: fire9-squeeze1x1>>fire9-relu_squeeze1x1 ... complete.
### Compiling layer group: fire9-expand1x1>>fire9-relu_expand1x1 ...
### Compiling layer group: fire9-expand1x1>>fire9-relu_expand1x1 ... complete.
### Compiling layer group: fire9-expand3x3>>fire9-relu_expand3x3 ...
### Compiling layer group: fire9-expand3x3>>fire9-relu_expand3x3 ... complete.
### Compiling layer group: customConv1>>customOutputConv1 ...
### Compiling layer group: customConv1>>customOutputConv1 ... complete.
### Compiling layer group: featureConv2>>featureRelu2 ...
### Compiling layer group: featureConv2>>featureRelu2 ... complete.
### Compiling layer group: customConv2>>customOutputConv2 ...
### Compiling layer group: customConv2>>customOutputConv2 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________
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    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "4.0 MB"         
    "SchedulerDataOffset"       "0x01c00000"     "4.0 MB"         
    "SystemBufferOffset"        "0x02000000"     "28.0 MB"        
    "InstructionDataOffset"     "0x03c00000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x04400000"     "104.0 MB"       
    "EndOffset"                 "0x0ac00000"     "Total: 172.0 MB"

### Network compilation complete.

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx® Zynq® UltraScale+ MPSoC ZCU102 hardware, run the deploy
method of the dlhdl.Workflow object. This method programs the FPGA board using the output of
the compile method and the programming file, downloads the network weights and biases, displays
progress messages, and the time it takes to deploy the network.

deploy(hW);

### Programming FPGA Bitstream using Ethernet...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming FPGA device on Xilinx SoC hardware board at 192.168.1.101...
### Copying FPGA programming files to SD card...
### Setting FPGA bitstream and devicetree for boot...
# Copying Bitstream zcu102_single.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/zcu102_single.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'
### Rebooting Xilinx SoC at 192.168.1.101...
### Reboot may take several seconds...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 21-Jun-2022 20:35:11

Test Network

Load the example image and convert the image into a dlarray. Then classify the image on the FPGA
by using the predict method of the dlhdl.Workflow object and display the results.

img = imread('vehicle_image.jpg'); 
I = single(rescale(img)); 
I = imresize(I, yolov3Detector.InputSize(1:2)); 
dlX = dlarray(I,'SSC');

Store the output of each detection head of the network in the features variable. Pass features to
the post-processing function processYOLOv3Ouputs to combine the multiple outputs and compute
the final results. To get the code for this function, see the processYOLOv3Output Function on page
10-281 section.

features = cell(size(net.OutputNames'));
[features{:}] = hW.predict(dlX);

### Finished writing input activations.
### Running single input activation.
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[bboxes, scores, labels] = processYOLOv3Output(anchorBoxes, inputSize, classNames, features, I);
resultImage = insertObjectAnnotation(I,'rectangle',bboxes,scores);
imshow(resultImage)

The FPGA returns a score prediction of 0.89605 with a bounding box drawn around the object in the
image. The FPGA also returns a prediction of vehicle to the labels variable.

downloadPretrainedYOLOv3Detector Function

The downloadPretrainedYOLOv3Detector function to download the pretrained YOLO v3 detector
network

function detector = downloadPretrainedYOLOv3Detector 
if ~exist('yolov3SqueezeNetVehicleExample_21aSPKG.mat', 'file')
    if ~exist('yolov3SqueezeNetVehicleExample_21aSPKG.zip', 'file')
        zipFile = matlab.internal.examples.downloadSupportFile('vision/data', 'yolov3SqueezeNetVehicleExample_21aSPKG.zip');
        copyfile(zipFile);
    end
    unzip('yolov3SqueezeNetVehicleExample_21aSPKG.zip');
end
pretrained = load("yolov3SqueezeNetVehicleExample_21aSPKG.mat");
detector = pretrained.detector;
disp('Downloaded pretrained detector');
end

processYOLOv3Output Function

The processYOLOv3Output function is attached as a helper file in this example's directory. This
function converts the feature maps from multiple detection heads to bounding boxes, scores and
labels. A code snippet of the function is shown below.

function [bboxes, scores, labels] = processYOLOv3Output(anchorBoxes, inputSize, classNames, features, img)
% This function converts the feature maps from multiple detection heads to bounding boxes, scores and labels
% processYOLOv3Output is C code generatable
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% Breaks down the raw output from predict function into Confidence score, X, Y, Width,
% Height and Class probabilities for each output from detection head
predictions = iYolov3Transform(features, anchorBoxes);

% Initialize parameters for post-processing
inputSize2d = inputSize(1:2);
info.PreprocessedImageSize = inputSize2d(1:2);
info.ScaleX = size(img,1)/inputSize2d(1);
info.ScaleY = size(img,2)/inputSize2d(1);
params.MinSize = [1 1];
params.MaxSize = size(img(:,:,1));
params.Threshold = 0.5;
params.FractionDownsampling = 1;
params.DetectionInputWasBatchOfImages = false;
params.NetworkInputSize = inputSize;
params.DetectionPreprocessing = "none";
params.SelectStrongest = 1;
bboxes = [];                                                                                                                               
scores = [];                                                                                                                                
labels = [];                                                                                                                             

% Post-process the predictions to get bounding boxes, scores and labels
[bboxes, scores, labels] = iPostprocessMultipleDetection(anchorBoxes, inputSize, classNames, predictions, info, params);
end

function [bboxes, scores, labels] = iPostprocessMultipleDetection (anchorBoxes, inputSize, classNames, YPredData, info, params)
% Post-process the predictions to get bounding boxes, scores and labels

% YpredData is a (x,8) cell array, where x = number of detection heads
% Information in each column is:
% column 1 -> confidence scores
% column 2 to column 5 -> X offset, Y offset, Width, Height of anchor boxes
% column 6 -> class probabilities
% column 7-8 -> copy of width and height of anchor boxes

% Initialize parameters for post-processing
classes = classNames;
predictions = YPredData;
extractPredictions = cell(size(predictions));
% Extract dlarray data
for i = 1:size(extractPredictions,1)
    for j = 1:size(extractPredictions,2)
        extractPredictions{i,j} = extractdata(predictions{i,j});
    end
end

% Storing the values of columns 2 to 5 of extractPredictions
% Columns 2 to 5 represent information about X-coordinate, Y-coordinate, Width and Height of predicted anchor boxes
extractedCoordinates = cell(size(predictions,1),4);
for i = 1:size(predictions,1)
    for j = 2:5 
        extractedCoordinates{i,j-1} = extractPredictions{i,j};
    end
end

% Convert predictions from grid cell coordinates to box coordinates.
boxCoordinates = anchorBoxGenerator(anchorBoxes, inputSize, classNames, extractedCoordinates, params.NetworkInputSize);
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% Replace grid cell coordinates in extractPredictions with box coordinates
for i = 1:size(YPredData,1)
    for j = 2:5 
        extractPredictions{i,j} = single(boxCoordinates{i,j-1});
    end
end

% 1. Convert bboxes from spatial to pixel dimension
% 2. Combine the prediction from different heads.
% 3. Filter detections based on threshold.

% Reshaping the matrices corresponding to confidence scores and  bounding boxes
detections = cell(size(YPredData,1),6);
for i = 1:size(detections,1)
    for j = 1:5
        detections{i,j} = reshapePredictions(extractPredictions{i,j});
    end
end
% Reshaping the matrices corresponding to class probablities
numClasses = repmat({numel(classes)},[size(detections,1),1]);
for i = 1:size(detections,1)
    detections{i,6} = reshapeClasses(extractPredictions{i,6},numClasses{i,1}); 
end

% cell2mat converts the cell of matrices into one matrix, this combines the
% predictions of all detection heads
detections = cell2mat(detections);

% Getting the most probable class and corresponding index
[classProbs, classIdx] = max(detections(:,6:end),[],2);
detections(:,1) = detections(:,1).*classProbs;
detections(:,6) = classIdx;

% Keep detections whose confidence score is greater than threshold.
detections = detections(detections(:,1) >= params.Threshold,:);

[bboxes, scores, labels] = iPostProcessDetections(detections, classes, info, params);
end

function [bboxes, scores, labels] = iPostProcessDetections(detections, classes, info, params)
% Resizes the anchor boxes, filters anchor boxes based on size and apply
% NMS to eliminate overlapping anchor boxes
if ~isempty(detections)

    % Obtain bounding boxes and class data for pre-processed image
    scorePred = detections(:,1);
    bboxesTmp = detections(:,2:5);
    classPred = detections(:,6);
    inputImageSize = ones(1,2);
    inputImageSize(2) = info.ScaleX.*info.PreprocessedImageSize(2);
    inputImageSize(1) = info.ScaleY.*info.PreprocessedImageSize(1);
    % Resize boxes to actual image size.
    scale = [inputImageSize(2) inputImageSize(1) inputImageSize(2) inputImageSize(1)];
    bboxPred = bboxesTmp.*scale;
    % Convert x and y position of detections from centre to top-left.
    bboxPred = iConvertCenterToTopLeft(bboxPred);

    % Filter boxes based on MinSize, MaxSize.
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    [bboxPred, scorePred, classPred] = filterBBoxes(params.MinSize, params.MaxSize, bboxPred, scorePred, classPred);

    % Apply NMS to eliminate boxes having significant overlap
    if params.SelectStrongest
        [bboxes, scores, classNames] = selectStrongestBboxMulticlass(bboxPred, scorePred, classPred ,...
            'RatioType', 'Union', 'OverlapThreshold', 0.4);
    else
        bboxes = bboxPred;
        scores = scorePred;
        classNames = classPred;
    end

    % Limit width detections
    detectionsWd = min((bboxes(:,1) + bboxes(:,3)),inputImageSize(1,2));
    bboxes(:,3) = detectionsWd(:,1) - bboxes(:,1);

    % Limit height detections
    detectionsHt = min((bboxes(:,2) + bboxes(:,4)),inputImageSize(1,1));
    bboxes(:,4) = detectionsHt(:,1) - bboxes(:,2);
    bboxes(bboxes<1) = 1;

    % Convert classId to classNames.
    labels = categorical(classes,cellstr(classes));
    labels = labels(classNames);

else
    % If detections are empty then bounding boxes, scores and labels should
    % be empty
    bboxes = zeros(0,4,'single');
    scores = zeros(0,1,'single');
    labels = categorical(classes);
end
end

function x = reshapePredictions(pred)
% Reshapes the matrices corresponding to scores, X, Y, Width and Height to
% make them compatible for combining the outputs of different detection
% heads
[h,w,c,n] = size(pred);
x = reshape(pred,h*w*c,1,n);
end

function x = reshapeClasses(pred,numClasses)
% Reshapes the matrices corresponding to the class probabilities, to make it
% compatible for combining the outputs of different detection heads
[h,w,c,n] = size(pred);
numAnchors = c/numClasses;
x = reshape(pred,h*w,numClasses,numAnchors,n);
x = permute(x,[1,3,2,4]);
[h,w,c,n] = size(x);
x = reshape(x,h*w,c,n);
end

function bboxes = iConvertCenterToTopLeft(bboxes)
% Convert x and y position of detections from centre to top-left.
bboxes(:,1) = bboxes(:,1) - bboxes(:,3)/2 + 0.5;
bboxes(:,2) = bboxes(:,2) - bboxes(:,4)/2 + 0.5;
bboxes = floor(bboxes);
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bboxes(bboxes<1) = 1;
end

function tiledAnchors = anchorBoxGenerator(anchorBoxes, inputSize, classNames,YPredCell,inputImageSize)
% Convert grid cell coordinates to box coordinates.
% Generate tiled anchor offset.
tiledAnchors = cell(size(YPredCell));
for i = 1:size(YPredCell,1)
    anchors = anchorBoxes{i,:};
    [h,w,~,n] = size(YPredCell{i,1});
    [tiledAnchors{i,2},tiledAnchors{i,1}] = ndgrid(0:h-1,0:w-1,1:size(anchors,1),1:n);
    [~,~,tiledAnchors{i,3}] = ndgrid(0:h-1,0:w-1,anchors(:,2),1:n);
    [~,~,tiledAnchors{i,4}] = ndgrid(0:h-1,0:w-1,anchors(:,1),1:n);
end

for i = 1:size(YPredCell,1)
    [h,w,~,~] = size(YPredCell{i,1});
    tiledAnchors{i,1} = double((tiledAnchors{i,1} + YPredCell{i,1})./w);
    tiledAnchors{i,2} = double((tiledAnchors{i,2} + YPredCell{i,2})./h);
    tiledAnchors{i,3} = double((tiledAnchors{i,3}.*YPredCell{i,3})./inputImageSize(2));
    tiledAnchors{i,4} = double((tiledAnchors{i,4}.*YPredCell{i,4})./inputImageSize(1));
end
end

function predictions = iYolov3Transform(YPredictions, anchorBoxes)
% This function breaks down the raw output from predict function into Confidence score, X, Y, Width,
% Height and Class probabilities for each output from detection head

predictions = cell(size(YPredictions,1),size(YPredictions,2) + 2);

for idx = 1:size(YPredictions,1)
    % Get the required info on feature size.
    numChannelsPred = size(YPredictions{idx},3);  %number of channels in a feature map
    numAnchors = size(anchorBoxes{idx},1);    %number of anchor boxes per grid
    numPredElemsPerAnchors = numChannelsPred/numAnchors;
    channelsPredIdx = 1:numChannelsPred;
    predictionIdx = ones([1,numAnchors.*5]);

    % X positions.
    startIdx = 1;
    endIdx = numChannelsPred;
    stride = numPredElemsPerAnchors;
    predictions{idx,2} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
    predictionIdx = [predictionIdx startIdx:stride:endIdx];

    % Y positions.
    startIdx = 2;
    endIdx = numChannelsPred;
    stride = numPredElemsPerAnchors;
    predictions{idx,3} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
    predictionIdx = [predictionIdx startIdx:stride:endIdx];

    % Width.
    startIdx = 3;
    endIdx = numChannelsPred;
    stride = numPredElemsPerAnchors;
    predictions{idx,4} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
    predictionIdx = [predictionIdx startIdx:stride:endIdx];
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    % Height.
    startIdx = 4;
    endIdx = numChannelsPred;
    stride = numPredElemsPerAnchors;
    predictions{idx,5} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
    predictionIdx = [predictionIdx startIdx:stride:endIdx];

    % Confidence scores.
    startIdx = 5;
    endIdx = numChannelsPred;
    stride = numPredElemsPerAnchors;
    predictions{idx,1} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
    predictionIdx = [predictionIdx startIdx:stride:endIdx];

    % Class probabilities.
    classIdx = setdiff(channelsPredIdx,predictionIdx);
    predictions{idx,6} = YPredictions{idx}(:,:,classIdx,:);
end

for i = 1:size(predictions,1)
    predictions{i,7} = predictions{i,4};
    predictions{i,8} = predictions{i,5};
end

% Apply activation to the predicted cell array
% Apply sigmoid activation to columns 1-3 (Confidence score, X, Y)
for i = 1:size(predictions,1)
    for j = 1:3
        predictions{i,j} = sigmoid(predictions{i,j});
    end
end
% Apply exponentiation to columns 4-5 (Width, Height)
for i = 1:size(predictions,1)
    for j = 4:5
        predictions{i,j} = exp(predictions{i,j});
    end
end
% Apply sigmoid activation to column 6 (Class probabilities)
for i = 1:size(predictions,1)
    for j = 6
        predictions{i,j} = sigmoid(predictions{i,j});
    end
end
end

function [bboxPred, scorePred, classPred] = filterBBoxes(minSize, maxSize, bboxPred, scorePred, classPred)
% Filter boxes based on MinSize, MaxSize
[bboxPred, scorePred, classPred] = filterSmallBBoxes(minSize, bboxPred, scorePred, classPred);
[bboxPred, scorePred, classPred] = filterLargeBBoxes(maxSize, bboxPred, scorePred, classPred);
end

function varargout = filterSmallBBoxes(minSize, varargin)
% Filter boxes based on MinSize
bboxes = varargin{1};
tooSmall = any((bboxes(:,[4 3]) < minSize),2);
for ii = 1:numel(varargin)
    varargout{ii} = varargin{ii}(~tooSmall,:);
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end
end

function varargout = filterLargeBBoxes(maxSize, varargin)
% Filter boxes based on MaxSize
bboxes = varargin{1};
tooBig = any((bboxes(:,[4 3]) > maxSize),2);
for ii = 1:numel(varargin)
    varargout{ii} = varargin{ii}(~tooBig,:);
end
end

function m = cell2mat(c)
% Converts the cell of matrices into one matrix by concatenating
% the output corresponding to each feature map

elements = numel(c);
% If number of elements is 0 return an empty array
if elements == 0
    m = [];
    return
end
% If number of elements is 1, return same element as matrix
if elements == 1
    if isnumeric(c{1}) || ischar(c{1}) || islogical(c{1}) || isstruct(c{1})
        m = c{1};
        return
    end
end
% Error out for unsupported cell content
ciscell = iscell(c{1});
cisobj = isobject(c{1});
if cisobj || ciscell
    disp('CELL2MAT does not support cell arrays containing cell arrays or objects.');
end
% If input input is struct, extract field names of structure into a cell
if isstruct(c{1})
    cfields = cell(elements,1);
    for n = 1:elements
        cfields{n} = fieldnames(c{n});
    end
    if ~isequal(cfields{:})
        disp('The field names of each cell array element must be consistent and in consistent order.');
    end
end
% If number of dimensions is 2 
if ndims(c) == 2
    rows = size(c,1);
    cols = size(c,2);
    if (rows < cols)
        % If rows is less than columns first concatenate each column into 1
        % row then concatenate all the rows
        m = cell(rows,1);
        for n = 1:rows
            m{n} = cat(2,c{n,:});
        end
        m = cat(1,m{:});
    else
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        % If columns is less than rows, first concatenate each corresponding
        % row into columns, then combine all columns into 1
        m = cell(1,cols);
        for n = 1:cols
            m{n} = cat(1,c{:,n});
        end
        m = cat(2,m{:});
    end
    return
end
end

References

[1] Redmon, Joseph, and Ali Farhadi. “YOLOv3: An Incremental Improvement.” Preprint, submitted
April 8, 2018. https://arxiv.org/abs/1804.02767.

See Also
dlhdl.Target | dlhdl.Workflow | compile | deploy | predict | classify
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Deep Learning Quantization

• “Quantization of Deep Neural Networks” on page 11-2
• “Quantization Workflow Prerequisites” on page 11-10
• “Calibration” on page 11-13
• “Validation” on page 11-15
• “Code Generation and Deployment” on page 11-18
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Quantization of Deep Neural Networks

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of
bits (1's and 0's). The data type defines how hardware components or software functions interpret
this sequence of 1's and 0's. Numbers are represented as either scaled integer (usually referred to as
fixed-point) or floating-point data types.

Most pretrained neural networks and neural networks trained using Deep Learning Toolbox use
single-precision floating point data types. Even small trained neural networks require a considerable
amount of memory, and require hardware that can perform floating-point arithmetic. These
restrictions can inhibit deployment of deep learning capabilities to low-power microcontrollers and
FPGAs.

Using the Deep Learning Toolbox Model Quantization Library support package, you can quantize a
network to use 8-bit scaled integer data types.

To learn about the products required to quantize and deploy the deep learning network to a GPU,
FPGA, or CPU environment, see “Quantization Workflow Prerequisites”.

Precision and Range
Scaled 8-bit integer data types have limited precision and range when compared to single-precision
floating point data types. There are several numerical considerations when casting a number from a
larger floating-point data type to a smaller data type of fixed length.

• Precision loss: Precision loss is a rounding error. When precision loss occurs, the value is rounded
to the nearest number that is representable by the data type. In the case of a tie it rounds:

• Positive numbers to the closest representable value in the direction of positive infinity.
• Negative numbers to the closest representable value in the direction of negative infinity.

In MATLAB you can perform this type of rounding using the round function.
• Underflow: Underflow is a type of precision loss. Underflows occur when the value is smaller than

the smallest value representable by the data type. When this occurs, the value saturates to zero.
• Overflow: When a value is larger than the largest value that a data type can represent, an
overflow occurs. When an overflow occurs, the value saturates to the largest value representable
by the data type.

Histograms of Dynamic Ranges
Use the Deep Network Quantizer app to collect and visualize the dynamic ranges of the weights
and biases of the convolution layers and fully connected layers of a network, and the activations of all
layers in the network. The app assigns a scaled 8-bit integer data type for the weights, biases, and
activations of the convolution layers of the network. The app displays a histogram of the dynamic
range for each of these parameters. The following steps describe how these histograms are produced.

1 Consider the following values logged for a parameter while exercising a network.
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2 Find the ideal binary representation of each logged value of the parameter.

The most significant bit (MSB) is the left-most bit of the binary word. This bit contributes most to
the value of the number. The MSB for each value is highlighted in yellow.
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3 By aligning the binary words, you can see the distribution of bits used by the logged values of a
parameter. The sum of MSB's in each column, highlighted in green, give an aggregate view of the
logged values.
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4 The MSB counts of each bit location are displayed as a heat map. In this heat map, darker blue
regions correspond to a larger number of MSB's in the bit location.
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5 The Deep Network Quantizer app assigns a data type that can avoid overflow, cover the range,
and allow underflow. An additional sign bit is required to represent the signedness of the value.

The figure below shows an example of a data type that represents bits from 23 to 2-3, including
the sign bit.

6 After assigning the data type, any bits outside of that data type are removed. Due to the
assignment of a smaller data type of fixed length, precision loss, overflow, and underflow can
occur for values that are not representable by the data type.
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In this example, the value 0.03125, suffers from an underflow, so the quantized value is 0. The
value 2.1 suffers some precision loss, so the quantized value is 2.125. The value 16.250 is larger
than the largest representable value of the data type, so this value overflows and the quantized
value saturates to 15.874.
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7 The Deep Network Quantizer app displays this heat map histogram for each learnable
parameter in the convolution layers and fully connected layers of the network. The gray regions
of the histogram show the bits that cannot be represented by the data type.
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See Also
Apps
Deep Network Quantizer

Functions
calibrate | validate | dlquantizer | dlquantizationOptions
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Quantization Workflow Prerequisites

This page describes the products required to quantize, simulate, and deploy deep learning networks
using Deep Learning Toolbox Model Quantization Library. The prerequisites required depend on your
selections at each stage of the quantization workflow.

Prerequisites for All Quantization Workflows
The following requirements apply to all stages of the quantization workflow.

• Deep Learning Toolbox
• Deep Learning Toolbox Model Quantization Library

Supported Networks and Layers
The following links describe the networks and layers supported for each execution environment.

• GPU — “Supported Networks, Layers, and Classes” (GPU Coder)
• FPGA — “Supported Networks, Layers, Boards, and Tools” on page 7-2
• CPU — “Networks and Layers Supported for Code Generation” (MATLAB Coder)
• MATLAB — “Networks and Layers Supported for Code Generation” (MATLAB Coder)

Note When the Execution Environment is set to MATLAB, only the layers for the Intel MKL-DNN
deep learning library are supported.

Prerequisites for Calibration
The prerequisites for calibration depend on your selection of calibration environment.

• Calibrate on host GPU (default) —

• Parallel Computing Toolbox™
• GPU Coder™ Interface for Deep Learning Libraries
• CUDA® enabled NVIDIA® GPU with compute capability 3.2 or higher.

• Calibrate on host CPU —

• MATLAB Coder™ Interface for Deep Learning Libraries

On Windows®, the MinGW C/C++ compiler is not supported. Use Microsoft Visual C++ 2019,
Microsoft Visual C++ 2017, or Microsoft Visual C++ 2015.

On Linux®, use a GCC C/C++ compiler.

For a list of supported compilers, see Supported and Compatible Compilers.
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Prerequisites for Quantization
To quantize your network for simulation in MATLAB using the quantize function or the Export >
Export Quantized Network option in the Deep Network Quantize app, no additional prerequisites
are required.

Prerequisites for Validation
The following are required to validate your quantized network for deployment using the validate
function or the Quantize and Validate button in the Deep Network Quantizer app.

Execution Environment Prerequisites for Validation
GPU • Parallel Computing Toolbox

• GPU Coder Interface for Deep Learning
Libraries

• CUDA enabled NVIDIA GPU with compute
capability 6.1, 6.3 or higher.

• “Setting Up the Prerequisite Products” (GPU
Coder)

FPGA • MATLAB Coder Interface for Deep Learning
Libraries

• Deep Learning HDL Toolbox
• Deep Learning HDL Toolbox Support Package

for Xilinx FPGA and SoC Devices
• Deep Learning HDL Toolbox Support Package

for Intel FPGA and SoC Devices
• hdlsetuptoolpath (HDL Coder)

CPU • MATLAB Coder Interface for Deep Learning
Libraries

• MATLAB Coder
• Embedded Coder®

• “Prerequisites for Deep Learning with
MATLAB Coder” (MATLAB Coder)

Note Before validation, you must create a raspi
object to establish connection to hardware.

MATLAB • N/A

For the FPGA execution environment, you can choose to validate your quantized network using
simulation when you set the Simulate property of dlquantizer to 'on'. This option requires only
Deep Learning HDL Toolbox.

For CPU and GPU deployment, the software generates code for a convolutional deep neural network
by quantizing the weights, biases, and activations of the convolution layers to 8-bit scaled integer
data types. The quantization is performed by providing the calibration result file produced by the
calibrate function to the codegen command.
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Code generation does not support quantized deep neural networks produced by the quantize
function.

See Also

Related Examples
• “Quantization of Deep Neural Networks”
• “Quantize Residual Network Trained for Image Classification and Generate CUDA Code”
• “Deploy INT8 Network to FPGA” on page 10-112
• “Generate int8 Code for Deep Learning Networks” (MATLAB Coder)

11 Deep Learning Quantization

11-12



Calibration
Workflow
Collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of
the quantized network and the dynamic ranges of the activations in all layers.

The calibrate method uses the collected dynamic ranges to generate an exponents file. The
dlhdl.Workflow class compile method uses the exponents file to generate a configuration file that
contains the weights and biases of the quantized network.

This workflow is the workflow to calibrate your quantized series deep learning network.
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See Also
calibrate | dlquantizationOptions | dlquantizer | validate

More About
• “Quantization of Deep Neural Networks” on page 11-2
• “Validation” on page 11-15
• “Code Generation and Deployment” on page 11-18
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Validation

Workflow
Before deploying the quantized network to your target FPGA or SoC board, to verify the accuracy of
your quantized network, use the validation workflow.

This workflow is the workflow to validate your quantized series deep learning network.

 Validation
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See Also
validate | dlquantizationOptions | dlquantizer
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More About
• “Quantization of Deep Neural Networks” on page 11-2
• “Calibration” on page 11-13
• “Code Generation and Deployment” on page 11-18
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Code Generation and Deployment
To generated code for and deploy your quantized deep learning network, create an object of class
dlhdl.Workflow. Use this object to accomplish tasks such as:

• Compile and deploy the quantized deep learning network on a target FPGA or SoC board by using
the deploy function.

• Estimate the speed of the quantized deep learning network in terms of number of frames per
second by using the estimate function.

• Execute the deployed quantized deep learning network and predict the classification of input
images by using the predict function.

• Calculate the speed and profile of the deployed quantized deep learning network by using the
predict function. Set the Profile parameter to on.

This figure illustrates the workflow to deploy your quantized deep learning network to the FPGA
boards.

11 Deep Learning Quantization

11-18



See Also
dlhdl.Workflow | dlhdl.Target | dlquantizer

More About
• “Quantization of Deep Neural Networks” on page 11-2
• “Calibration” on page 11-13
• “Validation” on page 11-15
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Deep Learning Processor IP Core User
Guide

• “Generate Custom Generic Deep Learning Processor IP Core” on page 12-2
• “Deep Learning Processor IP Core” on page 12-5
• “Use the Compiler Output for System Integration” on page 12-6
• “External Memory Data Format” on page 12-9
• “Deep Learning Processor IP Core Report” on page 12-14
• “Interface with the Deep Learning Processor IP Core” on page 12-17
• “Deep Learning Processor IP Core Generation for Custom Board” on page 12-33
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Generate Custom Generic Deep Learning Processor IP Core

This example shows how to generate a custom generic deep learning processor IP core. Integrate the
generated generic deep learning processor IP core into your larger reference design. To learn how to
integrate the generic deep learning processor IP core into your reference design, see “Authoring a
Reference Design for Live Camera Integration with Deep Learning Processor IP Core” on page 10-62.

Create Generic Deep Learning Processor Configuration

Create a custom deep learning processor configuration, by using the dlhdl.ProcessorConfig
object. Set the TargetPlatform of the deep learning processor configuration to 'Generic Deep
Learning Processor'.

hPC = dlhdl.ProcessorConfig;
hPC.TargetPlatform = 'Generic Deep Learning Processor';

Display the modified deep learning processor configuration.

hPC

hPC = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 16
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                      SigmoidBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                    Addition: 'on'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 40

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'single'
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                     System Level Properties
                              TargetPlatform: 'Generic Deep Learning Processor'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: ''
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

The generic deep learning processor configuration generates a generic Xilinx® IP core. To generate a
generic Intel® core, enter:

hPC.SynthesisTool = 'Altera QUARTUS II'

Generate Generic Deep Learning Processor IP Core

Generate a generic deep learning processor IP core by using the dlhdl.buildProcessor function.
Set the ProjectFolder, ProcessorName, and TargetLanguage properties of the generic deep
learning processor.

dlhdl.buildProcessor(hPC,'ProjectFolder','genericipcore_prj','ProcessorName','GenericProcessor','HDLCoderConfig',{'TargetLanguage','VHDL'})

This image shows the files generated for the generic deep learning processor IP core.

This image shows the generated generic deep learning processor IP core:
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The generic IP core consists of:

• An AXI4 slave interface called AXI4.
• Three AXI4 master interfaces for activation, weights, and utility or debug data.

The dlhdl.buildProcessor function also generates an IP core generation report that contains:

• Register address mapping table
• IP core user guide
• IP core file list

For more information, see “Deep Learning Processor IP Core Report” on page 12-14.

See Also
dlhdl.ProcessorConfig | dlhdl.buildProcessor

More About
• “Custom IP Core Generation” (HDL Coder)
• “Use the Compiler Output for System Integration” on page 12-6
• “External Memory Data Format” on page 12-9
• “Deep Learning Processor IP Core Report” on page 12-14
• “Interface with the Deep Learning Processor IP Core” on page 12-17
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Deep Learning Processor IP Core
The generated deep learning (DL) processor IP core is a standard AXI interface IP core that contains:

• AXI slave interface to program the DL processor IP core.
• AXI master interfaces to access the external memory of the target board.

To generate the DL processor IP core, use the HDL Coder™ IP core generation workflow. The
generated IP core contains a standard set of registers and the generated IP core report. For more
information, see “Deep Learning Processor IP Core Report” on page 12-14.

The DL processor IP core reads inputs from the external memory and sends outputs to the external
memory. The external memory buffer allocation is calculated by the compiler based on the network
size and your hardware design. For more information, see “Use the Compiler Output for System
Integration” on page 12-6.

The input and output data stored in the external memory in a predefined format. For more
information, see “External Memory Data Format” on page 12-9.

See Also

More About
• “Custom IP Core Generation” (HDL Coder)
• “Use the Compiler Output for System Integration” on page 12-6
• “External Memory Data Format” on page 12-9
• “Deep Learning Processor IP Core Report” on page 12-14
• “Interface with the Deep Learning Processor IP Core” on page 12-17
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Use the Compiler Output for System Integration
To integrate the generated deep learning processor IP core into your system reference design, use
the compile method outputs. The compile method:

• Generates the external memory address map.
• Optimizes the network layers for deployment.
• Splits networks into smaller series networks called legs for deployment.

External Memory Address Map
Reduce the time to integrate the generated deep learning processor IP core into your reference
design by using the compile method external memory address map. Use the address map to:

• Load the inputs to the deep learning processor IP core.
• Load the deep learning processor IP core instructions.
• Load the network weights and biases.
• Retrieve the prediction results.

The external memory address map consists of these address offsets:

• InputDataOffset — Address offset where the input images are loaded.
• OutputResultOffset — Output results are written starting at this address offset.
• SchedulerDataOffset — Address offset where the scheduler runtime activation data is written.

The runtime activation data includes information such as hand off between the different deep
learning processor kernels, instructions for the different deep learning processor kernels, and so
on.

• SystemBufferOffset — Do not use the memory address starting at this offset and ending at the
start of the InstructionDataOffset.

• InstructionDataOffset — All layer configuration (LC) instructions are written starting at this
address offset.

• ConvWeightDataOffset — All conv processing module weights are written starting at this
address offset.

• FCWeightDataOffset — All fully connected (FC) processing module weights are written
starting at this address offset.

• EndOffset — DDR memory end offset for generated deep learning processor IP.

For an example of the generated external memory address map, see the “Compile dagnet network
object”. The example displays the external memory map generated for the ResNet-18 image
recognition network and the Xilinx Zynq UltraScale+ MPSoC ZCU102 FPGA development board.

Compiler Optimizations
Optimize your custom deep learning network deployment by identifying layers that you can execute
in a single operation on hardware by fusing these layers together. The compile method performs
these layer fusions and optimizations:

• Batch normalization layer (batchNormalizationLayer) and 2-D convolution layer
(convolution2dLayer).
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• 2-D zero padding layer (nnet.keras.layer.ZeroPadding2dLayer) and 2-D convolution layer
(convolution2dLayer).

• 2-D zero padding layer (nnet.keras.layer.ZeroPadding2dLayer) and 2-D max polling layer
(maxPooling2dLayer).

This code output is an example compiler optimization in the compiler log.
Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'

Leg Level Compilations
Identify subsets of your deep learning networks that could be split into smaller series networks, by
using the compile method generated legs. A leg is a subset of the DAG network that you can convert
into a series network. The compile function groups the legs based on the output format of the
layers. The layer output format is defined as the data format of the deep learning processor module
that processes that layer. The layer output format is conv, fc, or adder. For example, in this image, the
compile function groups all the layers in Leg 2 together because they have a conv output format. To
learn about the layer output formats, see “Supported Layers” on page 7-13.

This image shows the legs of the ResNet-18 network created by the compile function and those legs
highlighted on the ResNet-18 layer architecture.
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See Also

More About
• “Deep Learning Processor IP Core” on page 12-5
• “External Memory Data Format” on page 12-9
• “Deep Learning Processor IP Core Report” on page 12-14
• “Interface with the Deep Learning Processor IP Core” on page 12-17
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External Memory Data Format
To load the input image to the deployed deep learning processor IP core and retrieve the output
results, you can read data from the external memory and write data to the external memory by using
the dlhdl.Workflow workflow. This workflow formats your data. Or, you can manually format your
input data. Process the formatted output data by using the external memory data format.

Key Terminology
• Parallel Data Transfer Number refers to the number of pixels that are transferred every

clock cycle through the AXI master interface. Use the letter N in place of the Parallel Data
Transfer Number. Mathematically N is calculated as
power(2,nextpow2(sqrt(ConvThreadNumber))). For example, if the convolution thread
number is nine, the calculated value of N is four. See “ConvThreadNumber”.

• Feature Number refers to the value of the z dimension of an x-by-y-by-z matrix. For example,
most input images are of dimension x-by-y-by-three, with three referring to the red, green, and
blue channels of an image. Use the letter Z in place of the Feature Number.

• Thread Number refers to the number of channels of the input that are operated upon
simultaneously in a convolution style layer. Use the letter C in place of the Thread Number.
Mathematically C is calculated as sqrt(ConvThreadNumber). For example, if the convolution
thread number is nine, the calculated value of C is three. See “ConvThreadNumber”.

Convolution Module External Memory Data Format
The inputs and outputs of the deep learning processor convolution module are typically three-
dimensional (3-D).The external memory stores the data in a one-dimensional (1-D) vector. Converting
the 3-D input image into 1-D to store in the external memory :

1 Sends N number of data in the z dimension of the matrix.
2 Sends the image information along the x dimension of the input image.
3 Sends the image information along the y dimension of the input image.
4 After the first NXY block is completed, we then send the next NXY block along the z dimension of

the matrix.

The image demonstrates how the data stored in a 3-by-3-by-4 matrix is translated into a 1-by-36
matrix that is then stored in the external memory.

 External Memory Data Format
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Data Padding for Power of Two Thread Numbers

When the image Feature Number (Z) is not a multiple of the Parallel Data Transfer Number
(N), then we must pad a zeroes matrix of size x-by-y along the z dimension of the matrix to make the
image Z value a multiple of N.

For example, if your input image is an x-by-y matrix with a Z value of three and the value of N is four,
pad the image with a zeros matrix of size x-by-y to make the input to the external memory an x-by-y-
by-4 matrix.

This image is the input image format before padding.

This image is the input image format after zero padding.

The image shows the example output external memory data format for the input matrix after the zero
padding. In the image, A, B, and C are the three features of the input image and G is the zero- padded
data to make the input image Z value four, which is a multiple of N.

If your deep learning processor consists of only a convolution (conv) processing module, the output
external data is using the conv module external data format, which means it possibly contains padded
data if your output Z value is not a multiple of the N value. The padded data is removed when you use
the dlhdl.Workflow workflow. If you do not use the dlhdl.Workflow workflow and directly read
the output from the external memory, remove the padded data.

Data Padding for Non-Power of Two Thread Numbers

When the Thread Number C is not a power of two and lower than N, then we must pad a zeroes
matrix of size x-by-y along the z dimension of the matrix. The zeroes matrix is inserted after every C
number of elements along the z dimension of the matrix to make the Z value a multiple of N.

For example, if your input image is an x-by-y matrix with a C value of three and N and Z values of four,
pad the image with a zeroes matrix of size x-by-y after the third channel and three zeroes matrices of
x-by-y after the fourth channel to make the input to the external memory an x-by-y-by-eight matrix.

This image is the input image format before padding.
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This image is the input image format after zero padding.

This image shows a sample three-by-three-by-four matrix passed as an input to a deep learning
processor configuration with a C value of three and N value of four.
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The image shows the example output external memory data format for the input matrix after the zero
padding.

When the values of C and N are equal padding is required only when Z is not a multiple of C.

Calculation of Output Memory Size

The size of the output for a deep learning processor IP core depends on the Feature Number(Z),
Thread Number (C), and the Parallel Data Thread Number (N). The formula to calculate the
output memory size is dimension1 * dimension2 * ceil(Z/C) * N. For example, for an input
matrix of size three-by-three-by-four the output memory size for a C and N value of four is 3 *3
*ceil(4/4) *4 = 36. In this example the output is written four values at a time because the value
of N is four.

For a three-by-three-by-four matrix with a C value of three and N value of four, the output size is 3 *3
*ceil(4/3) *4 =72. In this example even when the output is written four values at a time only the
first three values are valid as the fourth value is a zero padded value.

Fully Connected Module External Memory Data Format
If your deep learning network consists of both the convolution (conv) and fully connected (fc) layers,
the output of the deep learning (DL) processor follows the fc module external memory data format.

The image shows the example external memory output data format for a fully connected output
feature size of six. In the image, A, B, C, D, E, and F are the output features of the image.
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See Also

More About
• “Deep Learning Processor IP Core” on page 12-5
• “Use the Compiler Output for System Integration” on page 12-6
• “Deep Learning Processor IP Core Report” on page 12-14
• “Interface with the Deep Learning Processor IP Core” on page 12-17

See Also
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Deep Learning Processor IP Core Report
When you generate a deep learning processor IP core, Deep Learning HDL Toolbox generates an
HTML custom IP core report. The report describes the behavior and content of the generated custom
IP core. During custom processor generation, AXI4 slave registers are created to enable MATLAB or
other master devices to control and program the deep learning (DL) processor IP core.

The DL processor IP core is generated by using the HDL Coder IP core generation workflow. The
generated IP core contains a standard set of registers. For more information, see “Custom IP Core
Generation” (HDL Coder).

For the full list of register offsets, see the Register Address Mapping table in the generated deep
learning (DL) processor IP core report.

Summary
This section shows the Deep Learning HDL Toolbox settings when you generated the custom IP core.
This image is an example of the information in the summary section.

Target Interface Configuration
This section shows how your model design under test (DUT) ports map to the target hardware
interface and the processor/FPGA synchronization mode. This image is an example of the information
in the target interface configuration section:

Register Address Mapping
During custom processor generation, AXI4 slave registers are created to enable MATLAB or other
master devices to control and program the deep learning (DL) processor IP core.
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The deep learning processor IP core is generated by using the HDL Coder IP core generation
workflow. The generated IP core contains a standard set of registers. For more information, see
“Custom IP Core Generation” (HDL Coder). This image shows you a sample of the generated register
address mapping table:

IP Core User Guide
This section gives a high-level overview of the generated IP core architecture and instructions to
integrate the IP core into your reference design. This image shows a sample of the information
available in the user guide section:

IP Core File List
This section lists the files and folders that are a part of the generated deep learning processor IP
core. This image shows an example of the list of generated files:
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See Also

More About
• “Deep Learning Processor IP Core” on page 12-5
• “Use the Compiler Output for System Integration” on page 12-6
• “External Memory Data Format” on page 12-9
• “Interface with the Deep Learning Processor IP Core” on page 12-17
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Interface with the Deep Learning Processor IP Core
Retrieve predictions for a batch of images or for a data stream from a live camera input by using the
generated deep learning processor IP core. Select between batch processing mode and streaming
mode depending on available board resources, availability of input data, and application
requirements. Use MATLAB to run your deep learning network on the generated deep learning
processor IP core and retrieve the network prediction from the generated deep learning processor IP
core.

Create Deep Learning Processor Configuration
To generate a deep learning processor IP core that has the required interfaces for processing
multiple data frames, create a deep learning processor configuration by using the
dlhdl.ProcessorConfig class. In the deep learning processor configuration:

• Set InputRunTimeControl and OutputRunTimeControl to either port or register.
• You must set InputDataInterface and OutputDataInterface to ExternalMemory.

Use the dlhdl.buildProcessor function with the deep learning processor configuration object as
the input argument to generate the deep learning processor IP core. For example, this code
generates a deep learning processor IP core with the interfaces to process multiple data frames.

hPC = dlhdl.ProcessorConfig;
hPC.InputRunTimeControl = 'port';
hPC.OutputRunTimeControl = 'port'
hPC.InputDataInterface = 'External Memory';
hPC.OutputDataInterface = 'External Memory';
dlhdl.buildProcessor(hPC);

Select Data Processing Mode
Choose between batch processing mode and streaming mode based on your resource requirements,
availability of inputs, and interface complexity. This table lists the different selection criteria and
which mode to select based on the selection criteria.

Selection Criteria Batch Processing Mode Streaming Mode
Availability of input data All input data must be available

before you trigger the deep
learning processor IP core to
start processing data.

Stream input data as and when
data is available.

Memory requirements Can require large memory
resources to store all the input
data and processed output data
as the deep learning processor
IP core processes all the data
together.

Requires minimal memory
resources. The smallest memory
required is twice the size of one
input data frame.

Interface Complexity Simple protocol. No
handshaking protocol required.

Complex protocol. You must
implement a handshaking
protocol.
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Design Processing Mode Interface Signals
You can group the interface signals into run-time signals, handshaking signals, and setup control
signals. Handshaking signals are used only when the data processing mode is set to streaming mode.

Run-Time Control Signals

This table lists the run-time control signals, data types, interface types, and description. The interface
type depends on the RunTimeControl settings. For example, if RunTimeControl is set to port, the
interface type is port.

Signal Name Data Type Configuration
Control
Parameter or

Interface Type
(Port or
Register)

Description Interface
Direction
(Input or
Output)

InputStart logical RunTimeContr
ol

port/
register

Signal from the
user to the deep
learning
processor IP
core to start
processing the
data.

Input

FrameCount integer RunTimeContr
ol

port/
register

Signal from the
user to the deep
learning
processor IP
core specifying
the number of
input data
frames.

Input

InputStop logical RunTimeContr
ol

port/
register

Signal to stop
the continuous
streaming
mode. To stop
the continuous
streaming
mode, set this
signal to true.

Input

Run-Time Status Signals

This table lists the run-time control signals, data types, interface types, and description. The interface
type depends on the RunTimeStatus settings. For example, if RunTimeStatus is set to port, the
interface type is port.

Signal Name Data Type Configuration
Control
Parameter or

Interface Type
(Port or
Register)

Description Interface
Direction
(Input or
Output)
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Done logical RunTimeStatu
s

port/
register

Signal
indicating that
the deep
learning
processor IP
core has
processed all
input data and
written the last
output to
memory.

Output

StreamingDon
e

logical RunTimeStatu
s

port/
register

Signal to test
streaming
mode. During
testing, the
signal becomes
true when you
retrieve the last
output.

Output

Handshaking signals

This table lists the handshaking signals, data types, interface types, and description. These signals
are used for streaming mode. The interface type depends on the InputRunTimeControl and
OutputRunTimeControl settings. For example, if InputRunTimeControl is set to port, the
interface type is port. To ensure proper functionality of the generated deep learning processor, you
must specify the values for the signals that are ports or registers.

Signal Name Data Type Configuration
Control
Parameter or

Interface Type
(Port or
Register)

Description Interface
Direction
(Input or
Output)

InputAddr uint32 InputStreamCo
ntrol

port/
register

Signal
indicating the
address location
in memory for
loading the
input data. Use
this signal when
the
InputValid
signal is high.

Output

 Interface with the Deep Learning Processor IP Core

12-19



InputNext logical InputStreamCo
ntrol

port/
register

Signal to the
deep learning
processor IP
core to indicate
that the next
data frame is
available for
processing. Use
this signal when
the
InputValid
signal is high.

Input

InputSize uint32 InputStreamCo
ntrol

port/
register

Signal
indicating the
size in bytes of
the next input
data frame. Use
this signal when
the
InputValid
signal is high.

The InputSize
data includes
the zero
padding applied
to the input
data.

Output

InputValid logical InputStreamCo
ntrol

port/
register

Signal from the
deep learning
processor IP
core indicating
that the input
data is valid.

Output

OutputAddr uint32 OutputStreamC
ontrol

port/
register

Signal
indicating the
address location
in memory from
where to
retrieve the
output data.
Use this signal
when the
OutputValid
signal is high.

Output
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OutputNext logical OutputStreamC
ontrol

port/
register

Signal to the
deep learning
processor IP
core to indicate
that you have
read the
current output
data frame. Use
this signal when
the
OutputValid
signal is high.

Input

OutputSize uint32 OutputStreamC
ontrol

port/
register

Signal
indicating the
size of the next
output data
frame in bytes.
Use this signal
when the
OutputValid
signal is high.

Output

OutputValid logical OutputStreamC
ontrol

port/
register

Signal from the
deep learning
processor IP
core indicating
that the output
data is valid.

Output

Setup Control Signals

This table lists the setup control signals, data types, interface types, and description. The interface
type depends on the SetupControl settings. For example, if SetupControl is set to port, the
interface type is port.
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Signal Name Data Type Configuration
Control
Parameter

Interface Type
(Port or
Register)

Description Interface
Direction
(Input or
Output)

StreamingMod
e

logical SetupControl port/
register

Signal from the
user to the deep
learning
processor IP
core specifying
the data
processing
mode. false
selects buffer
mode and true
selects
streaming
mode.

Input

UseCustomBas
eAddr

logical SetupControl port/
register

Signal from the
user to the deep
learning
processor IP
core to use the
customer
specified input
and output base
addresses.true
selects user
addresses and
false selects
compiler
generated
addresses.

Input

InputBaseAdd
r

uint32 SetupControl port/
register

User provided
input base
address. Specify
the address
before you
toggle the
InputStart
signal.

Input

OutputBaseAd
dr

uint32 SetupControl port/
register

User provided
output base
address. Specify
the address
before you
toggle the
InputStart
signal.

Input
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Design Batch Processing Mode Interface
When you have all your input data available and access to large double data rate (DDR) memory
space, process multiple frames by using the batch processing mode. The figure shows the generated
deep learning processor IP core with interface signals for the batch processing mode of operation.
You use MATLAB and a dlhdl.Workflow object to run your deep learning network on the deep
learning processor IP core. Retrieve the network prediction results from the deep learning processor
IP core. To use batch mode, set the FrameCount register to a value greater than or equal to one.

To process a single data frame set the FrameCount register value to one. If the FrameCount is set to
zero the deep learning processor runs intermittently and the Done signal does not become true.

This flowchart shows the operation of the batch processing mode.
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This timing diagram shows the operation of the batch processing mode.

Load all the data frames into consecutive input DDR memory locations, toggle the inputStart
signal, wait for the done signal to go high, and then read the output data from the consecutive output
DDR memory locations. The clientAction signals represent your actions of loading input data and
reading output data into the DDR memory.

Design Streaming Mode Interface
When your input data is streaming in, when you have access to limited DDR memory space, and when
your application requires handshaking protocols, process multiple frames by using the streaming
mode. The figure shows the generated deep learning processor IP core with interface signals for the
streaming mode of operation. In this figure, the live camera streams data to an image preprocessing
design under test (DUT) that implements the streaming mode handshaking protocol to interact with
the generated deep learning processor IP core.

Date can be streamed to the deep learning processor IP core in two modes:

• Stream Data up to a frame count value— In this mode the deep learning processor processes data
frames up to the value specified in FrameCount. After processing all the frames the deep learning
processor IP core sets the Done signal to true. To use this mode the FrameCount must be set to
a value greater than or equal to one.

To process a single data frame set the FrameCount register value to one.
• Continuous streaming mode— In this mode the deep learning processor IP core processes data

frames until you set the InputStop value to true. To use this mode the FrameCount must be set
to zero.

Streaming Mode up to a Frame Count

This flowchart shows the operation of the streaming mode data processing mode. The read and write
operations occur in parallel.

 Interface with the Deep Learning Processor IP Core

12-25



The value set in the InputFrameNumberLimit specifies in terms of input and output frames the
space that is allocated in the DDR for the input and output ring buffers. In streaming mode, this value
must be at least two. When backpressure is applied, for values larger than two the deep learning
processor IP core:

• Continues to accept input data until the input ring buffer is full.
• Continues to produce output data until the output ring buffer is full.

As streaming continues, the input and output buffers fill and drain based on output backpressure and
input data availability.

This flowchart shows the operation of the streaming mode up to a frame count. The read and write
operations occur in parallel.
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This timing diagram shows the operation of the streaming mode up to a frame count.

1 Set the InputFrameNumberLimit argument of the compile method to a value greater than
two.

2 Set the StreamingMode signal to true.
3 Set the number of data frames to process in the FrameCount register.
4 Pulse the inputStart signal. These next actions can be performed in parallel:

a Wait for the inputValid signal to become true and then:

• Use the inputAddr and inputSize signals to write the next input data frame to DDR
memory.

• Pulse the inputNext signal.
b Wait for the outputValid signal to become true and then:

• Use the outputAddr and outputSize signals to read the processed output data frame.
• Pulse the outputNext signal.

5 Once the deep learning processor IP core has processed all the frames it sets the done signal to
true.

The clientAction signals represent your actions of loading input data and reading output data into
the DDR memory.

Continuous Streaming Mode

You can continuously stream data to the deep learning processor in continuous streaming mode. To
use the continuous streaming mode, set the FrameCount to zero. To stop the data processing set the
InputStop signal to true. The value set in the InputFrameNumberLimit specifies in terms of
input and output frames the space that is allocated in the DDR for the input and output ring buffers.
When backpressure is applied, for values larger than the value in InputFrameNumberLimit the
deep learning processor IP core:

• Continues to accept input data until the input ring buffer is full.
• Continues to produce output data until the output ring buffer is full.

As streaming continues, the input and output buffers fill and drain based on output backpressure and
input data availability.
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This flowchart shows the operation of the continuous streaming mode. The read and write operations
occur in parallel.
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This timing diagram shows the operation of the continuous streaming mode.

1 Set the InputFrameNumberLimit argument of the compile method to a value greater than
two.

2 Set the StreamingMode signal to true.
3 Set the number of data frames to process in the FrameCount register to zero.
4 Pulse the inputStart signal. These next actions can be performed in parallel:

a Wait for the inputValid signal to become true and then:

• Use the inputAddr and inputSize signals to write the next input data frame to DDR
memory.

• Pulse the inputNext signal.
b Wait for the outputValid signal to become true and then:

• Use the outputAddr and outputSize signals to read the processed output data frame.
• Pulse the outputNext signal.

5 Once you have written all the input data and read all the output data pulse the InputStop
signal.

Access Data from DDR
The deep learning IP core uses the three AXI4 Master interfaces to store and process:

• Activation data
• Weight data
• Debug data

The deep learning processor reads and writes data from the DDR based on the data processing mode
of operation by using these AXI4 Master interfaces.
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See Also
“Deep Learning Processor IP Core” on page 12-5 | “Use the Compiler Output for System Integration”
on page 12-6 | “External Memory Data Format” on page 12-9
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Deep Learning Processor IP Core Generation for Custom Board

This example shows how to create custom board and generate a deep learning processor IP core for
the custom board. In this example you:

• Create a custom board and reference design
• Estimate the network performance and board resource utilization
• Generate a custom processor and bitstream
• Deploy the network by using the custom bitstream

The image shows the process of deploying a network to a custom board and retrieving a prediction
from the deployed network.

This example uses the Xilinx® Kintex® UltraScale™ KCU105 board. The board contains these blocks:

• System reset block — Used to feed the clock and reset signals to the design.
• Memory Interface Generator (MIG) IP block — Used to generate memory controllers and

interfaces for Xilinx FPGAs.
• MATLAB JTAG AXI Manager block — Used by MATLAB to access onboard memory location. For

more details, see “Set Up AXI Manager” (HDL Verifier Support Package for Xilinx FPGA Boards).

Integrate the generated deep learning processor IP core into your reference design. For more details,
see “Board and Reference Design Registration System” (HDL Coder).
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This image shows the generated deep learning processor IP core dl_processor0 integrated into the
reference design.

Register Custom Board

Define the interface and attributes of a custom SoC board. To register the Xilinx® Kintex®
UltraScale™ KCU105 board:

1. Create a board registration file with the name hdlcoder_board_customization.m and add it to
the MATLAB path. The hdlcoder_board_customization.m function must return a second output.
For more information, see “Register a Custom Board” (HDL Coder).

Set the target workflow to DeepLearningProcessor. For information on other target workflows
supported by HDL Coder™ , see “Workflows in HDL Workflow Advisor” (HDL Coder).
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function [boardList, workflow] = hdlcoder_board_customization
  % Board plugin registration file
  % 1. Any registration file with this name on MATLAB path will be picked up
  % 2. Registration file returns a cell array pointing to the location of 
  %    the board plugins
  % 3. Board plugin must be a package folder accessible from MATLAB path,
  %    and contains a board definition file
  %
  % Copyright 2022 The MathWorks, Inc.

boardList = { ...
     'DLKCU105.plugin_board', ...
      };
workflow = hdlcoder.Workflow.DeepLearningProcessor;
end

2. Create the board definition file. To generate a deep learning processor, you must define the
ExternalMemorySize. This property defines the memory size of the DDR on the target board.

% Copyright 2022 The MathWorks, Inc.

% Board definition of KCU105
function hB = plugin_board()

% Construct board object
hB = hdlcoder.Board;

hB.BoardName    = 'Xilinx Kintex-Ultrascale KCU105 evaluation board';

% FPGA device information
hB.FPGAVendor   = 'Xilinx';
hB.FPGAFamily   = 'KintexU';
hB.FPGADevice   = 'xcku040-ffva1156-2-e';
hB.FPGAPackage  = '';
hB.FPGASpeed    = '';

% Tool information
hB.SupportedTool = {'Xilinx Vivado'};

% FPGA JTAG chain position
hB.JTAGChainPosition = 1;

% Size of external DDR memory in bytes
hB.ExternalMemorySize = 0x80000000; % 2 GB

% Add interfaces
% Standard "External Port" interface
hB.addExternalPortInterface( ...
    'IOPadConstraint', {'IOSTANDARD = LVCMOS18'});

% Custom board external I/O interface
hB.addExternalIOInterface( ...
     'InterfaceID',    'LEDs General Purpose', ...
     'InterfaceType',  'OUT', ...
     'PortName',       'GPLEDs', ...
     'PortWidth',      8, ...
     'FPGAPin',        {'AP8', 'H23', 'P20', 'P21', 'N22', 'M22', 'R23','P23'}, ...
     'IOPadConstraint', {'IOSTANDARD = LVCMOS18'});

% Custom board external I/O interface
hB.addExternalIOInterface( ...
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    'InterfaceID',    'User Push Buttons', ...
    'InterfaceType',  'IN', ...
    'PortName',       'PB', ...
    'PortWidth',      1, ...
    'FPGAPin',        {'AE10'}, ...
    'IOPadConstraint', {'IOSTANDARD = LVCMOS18'});

Register Custom Reference Design

Define the interface and attributes of a custom SoC reference design. To create a custom reference
design:

1. Create a reference design registration file named hdlcoder_ref_design_customization.m
that contains the list of reference design plugins associated with the board. For more information, see
“Register a Custom Reference Design” (HDL Coder).

function [rd, boardName] = hdlcoder_ref_design_customization
% Reference design plugin registration file
% 1. The registration file with this name inside of a board plugin folder 
%    will be picked up
% 2. Any registration file with this name on MATLAB path will also be picked up
% 3. The registration file returns a cell array pointing to the location of 
%    the reference design plugins
% 4. The registration file also returns its associated board name
% 5. Reference design plugin must be a package folder accessible from 
%    MATLAB path, and contains a reference design definition file
%
%   Copyright 2022 The MathWorks, Inc.

rd = {...
        'DLKCU105.matlab_3axi4_master_2020_1.plugin_rd', ...
  };

boardName = 'Xilinx Kintex-Ultrascale KCU105 evaluation board';

end

2. Create the reference design definition file. To generate a deep learning processor IP core, you must
define these three AXI4 Master Interfaces:

• AXI4 Master Activation Data
• AXI4 Master Weight Data
• AXI4 Master Debug

function hRD = plugin_rd()
% Reference design definition

% Copyright 2022 The MathWorks, Inc.

% Construct reference design object
hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');

hRD.ReferenceDesignName = 'AXI-Stream DDR Memory Access : 3-AXIM';
hRD.BoardName = 'Xilinx Kintex-Ultrascale KCU105 evaluation board';

% Tool information
hRD.SupportedToolVersion = {'2020.1','2020.2'};

% Add custom design files
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% add custom Vivado design
hRD.addCustomVivadoDesign( ...
  'CustomBlockDesignTcl', 'system_top.tcl',...
  'VivadoBoardPart',      'xilinx.com:kcu105:part0:1.0');

% Add HDL Verifier JTAG as AXI Master IP from support package
hRD.addIPRepository( ...
  'IPListFunction','hdlverifier.fpga.vivado.iplist', ...
  'NotExistMessage', 'IP Repository not found.');    

% Add interfaces

% add clock interface
hRD.addClockInterface( ...
     'ClockConnection',      'system_0/clk_out1', ...
     'ResetConnection',      'system_0/peripheral_aresetn',...
     'DefaultFrequencyMHz',  125,...
     'MinFrequencyMHz',      10,...
     'MaxFrequencyMHz',      250,...
     'ClockNumber',          1,...
     'ClockModuleInstance',  'system_0/clk_wiz_0');

% add AXI4 and AXI4-Lite slave interfaces
% This slave interface is used for intracting between DDR4 and Deep Learning IP
hRD.addAXI4SlaveInterface( ...
    'InterfaceConnection', 'system_0/M_AXI', ...
    'BaseAddress',         '0x44A00000',...
    'MasterAddressSpace',  'system_0/hdlverifier_axi_manager_0/axi4m',...
    'InterfaceType',       'AXI4');

% AXI4 Master Interface for the layer activation data with max data bit-width of 512
hRD.addAXI4MasterInterface(...
        'InterfaceID',         'AXI4 Master Activation Data', ...
        'ReadSupport',          true, ...  
        'WriteSupport',         true, ...
        'MaxDataWidth',         512, ...          
        'AddrWidth',            32, ...
        'InterfaceConnection', 'axi_interconnect_0/S01_AXI',... 
        'TargetAddressSegments', {{'ddr4_0/C0_DDR4_MEMORY_MAP/C0_DDR4_ADDRESS_BLOCK',hex2dec('80000000'),hex2dec('80000000')}}); 

% AXI4 Master Interface for the layer weight data with max data bit-width of 512
hRD.addAXI4MasterInterface(...
        'InterfaceID',         'AXI4 Master Weight Data', ...
        'ReadSupport',          true, ...  
        'WriteSupport',         true, ...
        'MaxDataWidth',         512, ...          
        'AddrWidth',            32, ...
        'InterfaceConnection', 'axi_interconnect_0/S02_AXI',... 
        'TargetAddressSegments', {{'ddr4_0/C0_DDR4_MEMORY_MAP/C0_DDR4_ADDRESS_BLOCK',hex2dec('80000000'),hex2dec('80000000')}}); 

% AXI4 Master Interface for the debugger with max data bit-width of 512
hRD.addAXI4MasterInterface(...
        'InterfaceID',         'AXI4 Master Debug', ...
        'ReadSupport',          true, ...  
        'WriteSupport',         true, ...
        'MaxDataWidth',         512, ...          
        'AddrWidth',            32, ...
        'InterfaceConnection', 'axi_interconnect_0/S03_AXI',... 
        'TargetAddressSegments', {{'ddr4_0/C0_DDR4_MEMORY_MAP/C0_DDR4_ADDRESS_BLOCK',hex2dec('80000000'),hex2dec('80000000')}});     
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3. The reference design plugin file must contain information about the target interface and the deep
learning processor IP core, the memory address space for the deep learning processor IP core, and a
command to validate the reference design. The file also requires information on the resources
consumed by the reference design. This information is used during resource estimation. Add the deep
learning processor information to the reference design file:

% Deep learning specific properties
hRD.registerDeepLearningTargetInterface("JTAG");
hRD.registerDeepLearningMemoryAddressSpace(0x80000000, 0x80000000); % 2GB

% Resource utilization information
hRD.ResourcesUsed.LogicElements = 30500;
hRD.ResourcesUsed.DSP = 3;
hRD.ResourcesUsed.RAM = 26.5;

Performance Estimation

Reduce the time required to design and deploy a custom deep learning network that meets
performance requirements by analyzing the layer-level latencies before deploying the network.

Estimate the performance of network for your custom board by collecting calibration data from the
custom board, by:

1 Generating a calibration bitstream
2 Deploying the calibration bitstream to the target custom board
3 Retrieving the external to internal memory transaction latencies

Create a Processor Configuration object.

hPC = dlhdl.ProcessorConfig;

Specify the TargetPlatform. This automatically sets the SynthesisToolChipFamily,
SynthesisToolDeviceName, and ReferenceDesign properties.

hPC.TargetPlatform = 'Xilinx Kintex-Ultrascale KCU105 evaluation board';

Set the target frequency.

hPC.TargetFrequency = 100;

This example uses a ResNet-18 pretrained network. For more details, see resnet18. Set the deep
learning network:

net = resnet18;

To fit this design onto the target, reduce the number of parallel convolution processor kernel threads
for the conv module to 9.

setModuleProperty(hPC, 'conv', 'ConvThreadNumber', 9);

Set the Xilinx Vivado toolpath to your design tool using the hdlsetuptoolpath function, then build
the calibration bitstream.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath','C:\Xilinx\Vivado\2020.2\bin\vivado.bat');
bitstreamPath = buildCalibrationBitstream(hPC);
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Deploy the bitstream to the hardware and obtain the external- to-internal memory transaction
latencies. You can use these values to get better estimates for the layer-level latencies.

deployCalibrationBitstream(hPC, bitstreamPath);

The deployCalibrationBitstream saves the calibration data from the hardware as a structure in
the CalibrationData property of the dlhdl.ProcessorConfig object. The function also saves
the calibration data as a MAT-file with the name calibrationData.mat. You can load this data into
a new dlhdl.ProcessorConfig object by entering:

load('calibrationData.mat');
hPC.CalibrationData = calData;

Estimate the performance of the network for the custom processor configuration.

estimatePerformance(hPC, net);

Resource Estimation

Verify that the generated bistream and network fit on your target custom board, by using
estimateResources to estimate the resource utilization. To learn how to estimate the resource
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utilization for your custom boards, see “Estimate Resource Utilization for Custom Board and
Reference Design” on page 10-198.

Generate Custom Bitstream for Custom Processor Configuration

Generate a bitstream for the custom processor configuration hPC.

dlhdl.buildProcessor(hPC);

Locate the bitstream file and associated MAT file at cwd\dlhdl_prj\, where cwd is your current
working folder. The name of the bitstream file is dlprocessor.bit. The name of the MAT file is
dlprocessor.mat. To use the generated bitstream for the supported Xilinx boards, copy the
dlprocessor.bit and dlprocessor.mat files to the current working folder.

Deploy the Custom Bitstream and Run Predictions on the Network

After you generate the bitstream, deploy the network and run the predictions on the network. For
more information, refer to the “Prototype Deep Learning Networks on FPGA and SoC Devices” on
page 5-2 page. For an example on prototyping, see “Bicyclist and Pedestrian Classification by Using
FPGA” on page 10-51.

Create Target Object

Create a target object with the vendor name of the target device. Specify the interface to connect the
target device to the host using the Interface name-value pair. This example connects to the target
using the JTAG interface.

hT = dlhdl.Target('Xilinx', 'Interface', 'JTAG')

Create Workflow Object for ResNet-18 Network

Create an object of the dlhdl.Workflow class. Specify the network, the bitstream name, and the
target object.

hW = dlhdl.Workflow('Network', net, 'Bitstream', 'dlprocessor.bit', 'Target', hT);

Compile the Network

Run the compile function of the dlhdl.Workflow object.

compile(hW)
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Deploy the Bitstream to the FPGA

To deploy the network on the Xilinx KCU105 Kintex hardware, run the deploy function of the
dlhdl.Workflow object.

deploy(hW)

Run Prediction for the Network

Load the sample image.

img = imread('sampleImage1.png');
imshow(img);

Run a prediction on the image. The result output argument contains the output of the layer
preceding the ClassificationOutputLayer and speed contains the profiler table.

[result, speed] = predict(hW, img, 'Profile', 'on');
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Get the output class from the prediction.

[value,idx] = max(result);
classNames = net.Layers(end).Classes;
classNames(idx)

See Also
hdlcoder.ReferenceDesign | registerDeepLearningMemoryAddressSpace |
registerDeepLearningTargetInterface | validateReferenceDesignForDeepLearning
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More About
• “Deep Learning Processor IP Core” on page 12-5
• “Use the Compiler Output for System Integration” on page 12-6
• “External Memory Data Format” on page 12-9
• “Interface with the Deep Learning Processor IP Core” on page 12-17
• “Register a Custom Board” (HDL Coder)
• “Register a Custom Reference Design” (HDL Coder)
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Deep Learning HDL Toolbox Support for
LSTM Networks

• “Support for Long Short-Term Memory Networks” on page 13-2
• “How Deep Learning HDL Toolbox Compiles the LSTM Layer” on page 13-5
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Support for Long Short-Term Memory Networks
A long short-term memory (LSTM) network is a type of recurrent neural network (RNN) that can
learn long-term dependencies between time steps of sequence data. Deep Learning HDL Toolbox
supports these LSTM network architectures:

• Single LSTM layer networks — A single LSTM layer network consists of only one LSTM layer. This
diagram illustrates the architecture of a single LSTM layer network for sequence regression. The
network starts with a sequence input layer followed by an LSTM layer. The network ends with a
fully connected layer and a regression output layer.

• Stacked LSTM layer networks — A stacked LSTM layer network consists of multiple LSTM layers.
In a stacked LSTM layer network, the preceding LSTM layer provides a sequence output to the
following LSTM layer. This diagram illustrates the architecture of a stacked LSTM layer network
used for classification. The network starts with a sequence input layer followed by an LSTM layer,
dropout layer, second LSTM layer, and a second dropout layer. To predict class labels, the network
ends with a fully connected layer, a softmax layer, and a classification output layer.
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Deep Learning HDL Toolbox does not support bidirectional LSTM layers. For a list of supported
layers, see “Supported Layers” on page 7-13.

Prediction and Forecasting
To make predictions on new data in an LSTM network, use predict. See “Run Sequence-to-
Sequence Classification on FPGAs by Using Deep Learning HDL Toolbox” on page 10-253.
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LSTM networks can remember the state of the network between predictions. The network state is
useful when you do not have the complete time series in advance, or if you want to make multiple
predictions on a long time series. To predict parts of a time series and update the network state, use
predictAndUpdateState. To reset the network state between predictions, use resetState. To
learn about forecasting future time steps of a sequence, see “Run Sequence Forecasting on FPGA by
Using Deep Learning HDL Toolbox™” on page 10-267.

See Also

More About
• “Long Short-Term Memory Networks”
• “Prototype Deep Learning Networks on FPGA and SoC Devices” on page 5-2
• “How Deep Learning HDL Toolbox Compiles the LSTM Layer” on page 13-5
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How Deep Learning HDL Toolbox Compiles the LSTM Layer
An LSTM is a type of recurrent neural network (RNN) that can learn long-term dependencies
between time steps of sequence data. When you compile LSTM layers, Deep Learning HDL Toolbox
splits the LSTM layer into components, generates instructions and memory offsets for those
components. Integrate a deep learning processor IP core with LSTM layers into your reference
design by:

• Learning about the compile function generated LSTM layer components and how those
components are optimized.

• Identifying the external memory addresses that store the generated LSTM layer components
weights, biases, and instructions.

LSTM Layer Architecture
The LSTM layer uses a gating mechanism that controls the memorizing process. You can store, write,
or read information in LSTMs by using gates that open and close. An LSTM layer consists of these
components:

• Forget gate — The forget gate,f decides which information to remember and which information to
forget.

• Input gate — The input gate, i updates the cell state using information from the input current
state x and the previous hidden state h.

• Cell state — The cell state stores information from the new layer state based on the previous cell
state, c. The current cell state is, g.

• Output gate — The output gate, o determines the value of the next hidden state, h.

This image shows the components of an LSTM layer:
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Compiler Interpretation
The compile method of the dlhdl.Workflow object translates the:

• Forget gate into lstm.wf
• Input gate into lstm.wi
• Cell candidate into lstm.wg
• Output gate into lstm.wo

The compile method

• Inserts a depth concatenation layer between the layer preceding the LSTM layer and the gates of
the LSTM layer.

• Generates sigmoid, hyperbolic tangent, multiplication, and addition layers to replace the
mathematical operations of the LSTM layer.
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When the network has multiple stacked LSTM layers, the compile method uses the LSTM layer
name when generating the translated instructions. For example, if the network has three stacked
LSTM layers named lstm_1, lstm_2, and lstm_3, the compile method output is lstm_1.wi,
lstm_1.wo, lstm_1.wg, lstm_1.wf, lstm_2.wi, and so on. The compiler schedules the different
components of the LSTM layer such as fully connected layers, sigmoid blocks, tanh blocks, and so on,
into different kernels within the deep learning processor architecture.

This image shows the graphical view of the compile method transformation of the LSTM layer:

To see the output of the compile method for an LSTM network, see “Run Sequence-to-Sequence
Classification on FPGAs by Using Deep Learning HDL Toolbox”.

See Also
dlhdl.Workflow | compile

More About
• “Use the Compiler Output for System Integration” on page 12-6
• “Support for Long Short-Term Memory Networks” on page 13-2
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• “Interface with the Deep Learning Processor IP Core” on page 12-17
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